Abstract

A new concern about surface water quality is the occurrence of emerging contaminants that have being recognized as a new class of water contaminants such as antibiotics, hormones, pesticides, personal care products and pharmaceutical products. The occurrence of these contaminants in the aquatic environment and especially in surface water is a serious concern because this is usually the source of water for drinking water treatment plants (DWTP). This review provides a summary of the occurrence and the analytical methodology (extraction process, chromatography analysis, detection systems and ionization source) of emerging contaminant analysis in surface waters including rivers, lakes, creeks and wetlands for their analysis.

INTRODUCTION

The occurrence of emerging contaminants (ECs), also called micropollutants, is derived from different sources that could be anthropogenic as well as natural substances. These contaminants in waters are commonly at trace concentrations, ranging from a few nanograms per litre (ng/L) to several micrograms per litre (μg/L) (Luo et al. 2014). The presence of ECs in surface waters is mainly attributed to discharges of wastewater (Petrie et al. 2015; Ebele et al. 2017) because conventional wastewater treatment, based on activated sludge processes, exhibits limitations on their removal (Tran et al. 2018). The ECs include a long list of products used daily such as antibiotics, hormones, pesticides, personal care products (PCPs), and pharmaceuticals.

In particular, the occurrence of ECs in surface water could be a troubling problem when this is used for drinking water (Riva et al. 2018). These contaminants have been detected globally in many natural water systems including rivers, lakes and reservoirs (Wang et al. 2011; Lai et al. 2016; Wanda et al. 2017; Rivera-Jaimes et al. 2018). Since the end of the 19th century, drinking water supply has focused mainly on quality standards of microbial risk (WHO 2006), nevertheless there is a new concern about safe water access, that is, harmful chemicals in small amounts such as ECs. This contamination threatens surface water resources since water quality deterioration has become a serious concern worldwide due to the increase in pollution (John et al. 2014; WHO 2016; Wu et al. 2017).

The number of ECs in the aquatic environment is growing continuously every year (Agüera et al. 2013) and its transformation products (TPs) continue to be an important aspect in this topic because TPs can often be more toxic than the parent compounds (Richardson & Ternes 2018). Considering the impact of these contaminants on aquatic life and human health, data analysis of these contaminants is required. This valuable and high-quality information can be supplied by sensible and selective analytical methods. Nevertheless there is still a gap in knowledge of occurrence, fate and effects in the environment. In this context, this paper investigated the data of EC occurrence in environmental surface waters and their detection methodology.

EXTRACTION PROCESS

ECs are normally present at trace concentrations in surface waters requiring an extraction process called solid phase extraction (SPE). SPE is often needed to concentrate the target compounds for analysis. This technique is used by various researchers around the world. It follows USEPA method 3535A (USEPA 2007) and it is used in sample preparation for different purposes to remove interferences, for concentration or trace enrichment of the analytes, desalting and sample storage and transport (Agilent Technologies 2013).

The procedures for SPE, very similar for most organic analytes, are as follows: sample preparation, pH adjustment, setting up the extraction apparatus and information regarding extract concentration generally apply to all target analytes (USEPA 2007). Regarding the overall extraction step, SPE and solid phase microextraction (SPME) continue to be the main techniques for application in sample preparation before chromatographic analysis of ECs. SPME techniques have been developed not only for reduction of solvent and instrumentation extraction but also to improve and facilitate rapid and convenient sample preparation (Pawliszyn 2012).

According to the literature consulted, the most representative technology for extraction in the current analysis of ECs is SPE. This technique is used in multiple configuration columns for the detection of these contaminants. In the available literature on the application of SPE the hydrophilic-lipophilic-balanced (HLB) cartridge is widely used in the study of different CEs (Celle-Jeanton et al. 2014; Osorio et al. 2016; Rivera-Jaimes et al. 2018). Otherwise SPME technology has been employed by Regueiro et al. (2009) and Beceiro-González et al. (2007) to develop a methodology for the analysis of personal care products and pesticides in surface waters, respectively.

A new feature regarding SPME is the automation of the process, e.g. a method of automated SPME-GC-MS for the determination of pesticides in surface and ground water has been validated by Rodriguez-Lafuente et al. (2016). Also, new SPE materials have been developed as in fabric phase sorptive extraction (FPSE), a new device of very high sorbent loading in an ultra-thin coating (Kabir et al. 2017). These innovations represent new possibilities in the analysis of ECs in complex environmental samples such as those of surface waters.

CHROMATOGRAPHY ANALYSIS

A rigorous evaluation of environmental pollution of ECs requires constant innovation in the analytical methodology. Moreover, the detection of ECs in the environment can be a challenge as they typically occur at trace concentrations. This difficulty encourages the development of analytical methods that are highly sensitive and selective. The principal analytical techniques for EC monitoring are mainly based on gas chromatography (GC) and liquid chromatography (LC) coupled to mass spectrometry (MS). In recent years, the tendency for analysis of ECs through liquid chromatography–tandem mass spectrometry (LC-tandem-MS) has increased. The extensive literature available confirms this choice of analysis for many classes of ECs in environmental samples, including surface waters (Spongberg et al. 2011; Afonso-Olivares et al. 2013; Celle-Jeanton et al. 2014; Torres et al. 2015; Aparicio et al. 2017; Munz et al. 2017; Wilkinson et al. 2017; Hermes et al. 2018; Rivera-Jaimes et al. 2018). This key technique for environmental analysis allows the detection of a wide range of polar and non-volatile compounds and can reduce sample preparation (Rosen 2007). Mass spectrometers use an ion source to generate ions with positive or negative charges (see Ionization sources section). The ions then travel through the mass analyser and arrive at different parts of the detector according to their mass/charge (m/z) ratio, and hence ions can be identified (Ho et al. 2003).

As for gas chromatography–mass spectrometry (GC-MS), it remains a popular methodology since it is still considered a highly efficient separation technique, but lengthy sample derivatization processes are often required to ensure analyte volatility (Kanani et al. 2008), for instance derivatization or chemical modification. A great deal of literature about the monitoring of ECs in surface water that employs this technique (Bu et al. 2015; Kong et al. 2015; Selvaraj et al. 2015; Terzopoulou et al. 2015; Wang et al. 2015; Edjere et al. 2016; El-Gawad 2016) supports its analytical efficiency. Furthermore, GC still offers some clear advantages over LC, for instance higher separation efficiency and lower costs without the problems associated with the matrix effects of LC-MS/MS (Reemtsma & Quintana 2006).

The newest development to improve the separation of complex mixtures is multi-dimensional chromatography with dimensions based on different separation mechanisms (Leonhardt et al. 2015). Comprehensive two-dimensional gas chromatography (GC × GC) has been demonstrated as a technique capable of enhanced separation of compounds within a complex matrix (Organtini et al. 2014; Prebihalo et al. 2015) such as a sample of environmental water represents. Hence, many successful applications of GC × GC for EC detection in surface water have been addressed (Jover et al. 2009; Gómez et al. 2011; Wanda et al. 2017). The basic experiment of this technique comprises the connection of two chromatographic columns with complementary polarity that together enhance the separation capacity of the arrangement; the columns are interfaced through a modulator device, which effectively decouples elution on each column (Edwards et al. 2011; Tranchida et al. 2011).

Another aim in the methodologies for ECs is to improve the time for analysis and reduce the consumption of solvents. In this sense, a suitable choice is the use of chromatographic systems at very high pressure: ultra-high-performance liquid chromatography (UHPLC). This technique has gained importance in the analysis of ECs and many studies have employed this technique (Gros et al. 2012, 2013; Ma et al. 2016; Petrie et al. 2016; Yang et al. 2018). The use of this very high pressure together with 1.7-μm-particle-size columns allows savings on time and solvent consumption, without altering or even with improvements to sensitivity and peak resolution (Guillarme et al. 2007; Chauveau-Duriot et al. 2010).

DETECTION SYSTEMS

High-resolution mass spectrometry (HRMS) combined with high-performance liquid chromatography is a technique that plays a role in the investigation of environmental processes and in the study of the fate of pollutants (Calza et al. 2013). One lauded benefit of HRMS is the possibility to retrospectively process data for compounds that has led to the archiving of HRMS data (Alygizakis et al. 2018). However the most important feature of HRMS is the capacity to determine the molecular formulas of the analytes from accurate mass measurements (Picó & Barceló 2015).

With regard to mass analysers, specifically hybrid instruments, QqToF, QqLIT and orbitrap for example are becoming more popular, because of their capabilities in achieving accurate mass measurements and acquiring indispensable qualitative information in the form of full-scan spectra (Petrovic & Barceló 2013). The actual literature on the analysis of ECs in surface waters shows the application of these hybrid mass analysers (Gros et al. 2012, 2013; Pitarch et al. 2016; Gago-Ferrero et al. 2017).

Nevertheless, MS may not be the only detection system for the analysis, from the large literature consulted in this review. Other methodologies based on different detection systems for the analysis of ECs have been recently published. Salvatierra-Stamp et al. (2015) reported EC analysis in water samples, including one river through a LC method coupled to a photodiode array detector (PAD).

IONIZATION SOURCES

Different types of ion sources commonly used include, among others, electrospray ionization (ESI) and electron impact (EI). EI is by far the most commonly used ionization method for GC-MS instruments. Almost all the GC-MS methodologies for the analysis of ECs consulted in this review employed this ionization source. Nevertheless, ESI is today the most widely used ionization technique in chemical and biochemical analysis for liquid form samples because it ionizes molecules directly from the liquid phase (Wilm 2011). This soft ionization source uses electrical energy to assist the transfer of ions from solution into the gaseous phase without fragmentation (Ho et al. 2003; Banerjee & Mazumdar 2012). The extensive body of knowledge about the occurrence of ECs in surface waters confirms that this ionization source is the most widely used coupled to LC devices (Spongberg et al. 2011; Gros et al. 2013; Osorio et al. 2016; Hermes et al. 2018; Rivera-Jaimes et al. 2018).

OCCURRENCE OF EMERGING CONTAMINANTS IN SURFACE WATERS AND THEIR ANALYTICAL METHODOLOGY

Despite the occurrence of ECs in surface water, numerous contaminants are still continuously released as a result of anthropogenic activities such as industry, agriculture and household activities and these may affect human health via exposure to drinking water (Hartmann et al. 2018). For this reason, the development of sensitive and reliable analytical techniques is essential for monitoring the occurrence of ECs in surface waters. A comparative analysis regarding the occurrence of ECs including pharmaceuticals, PCPs, pesticides, antibiotics and hormones in surface waters from several waterbodies and the methodology of detection are presented in this section. Table 1 summarizes the main analytical methodologies (extraction process, chromatography instrument, ionization mode and detection system) employed for the detection of diverse ECs in surface waters.

Table 1

Analytical methodologies employed for the detection of diverse ECs in surface waters

Extraction processAnalytical methodology (chromatography instrument-Ionization source-detection system)Compounds analysedReference
SPE HPLC-ESI-MS/MS (tandem) Pharmaceuticals, hormones, PCPs, plasticizers and perfluorinated compounds Spongberg et al. (2011); Wang et al. (2011); Torres et al. (2015); Lai et al. (2016); Wilkinson et al. (2017); Rivera-Jaimes et al. (2018)  
SPE HPLC-ESI-MS (Orbitrap) Pharmaceuticals Calza et al. (2013)  
SPE HPLC-PAD Eight ECs including carbamazepine, bisphenol A, 17α-ethinylestradiol and triclosan Salvatierra-Stamp et al. (2015)  
SPE UHPLC-ESI-MS/MS (tandem) Pharmaceuticals, PCPs, illicit drugs and pesticides Carmona et al. (2014); Celle-Jeanton et al. (2014); De Gerónimo et al. (2014); Ma et al. (2016); Paíga et al. (2016); Osorio et al. (2016); Petrie et al. (2016); Yang et al. (2018)  
SPE UHPLC-ESI-MS (QToF) Pharmaceuticals, PCPs, artificial sweeteners, pesticides, and perflouroalkyl substances Pitarch et al. (2016); Gago-Ferrero et al. (2017)  
SPE UHPLC-ESI-MS (QqLIT) Pharmaceuticals and antibiotics Gros et al. (2012, 2013)  
SPE GC-EI-MS/MS (tandem) Pharmaceuticals, PCPs, antioxidants, pesticides, phenols, aromatic hydrocarbons etc. Félix-Cañedo et al. (2013); Kong et al. (2015); Terzopoulou et al. (2015)  
SPE GCxGC-MS (ToF) Pharmaceuticals, plasticizers, pesticides, benzothiazoles, benzotriazoles and benzosulfonamides Jover et al. (2009); Wanda et al. (2017); Glinski et al. (2018)  
SPME GC-EI-MS (tandem) Pesticides, parabens, triclosan and related chlorophenols Beceiro-González et al. (2007); Regueiro et al. (2009)  
SBSE HPLC-ESI-MS/MS (tandem) Polar and non-polar emerging and priority pollutants Aparicio et al. (2017)  
SBSE GCxGC-MS (ToF) Priority and emerging contaminants including: PCPs, pesticides, and aromatic hydrocarbons Gómez et al. (2011)  
LLE HPLC- FD   
Extraction processAnalytical methodology (chromatography instrument-Ionization source-detection system)Compounds analysedReference
SPE HPLC-ESI-MS/MS (tandem) Pharmaceuticals, hormones, PCPs, plasticizers and perfluorinated compounds Spongberg et al. (2011); Wang et al. (2011); Torres et al. (2015); Lai et al. (2016); Wilkinson et al. (2017); Rivera-Jaimes et al. (2018)  
SPE HPLC-ESI-MS (Orbitrap) Pharmaceuticals Calza et al. (2013)  
SPE HPLC-PAD Eight ECs including carbamazepine, bisphenol A, 17α-ethinylestradiol and triclosan Salvatierra-Stamp et al. (2015)  
SPE UHPLC-ESI-MS/MS (tandem) Pharmaceuticals, PCPs, illicit drugs and pesticides Carmona et al. (2014); Celle-Jeanton et al. (2014); De Gerónimo et al. (2014); Ma et al. (2016); Paíga et al. (2016); Osorio et al. (2016); Petrie et al. (2016); Yang et al. (2018)  
SPE UHPLC-ESI-MS (QToF) Pharmaceuticals, PCPs, artificial sweeteners, pesticides, and perflouroalkyl substances Pitarch et al. (2016); Gago-Ferrero et al. (2017)  
SPE UHPLC-ESI-MS (QqLIT) Pharmaceuticals and antibiotics Gros et al. (2012, 2013)  
SPE GC-EI-MS/MS (tandem) Pharmaceuticals, PCPs, antioxidants, pesticides, phenols, aromatic hydrocarbons etc. Félix-Cañedo et al. (2013); Kong et al. (2015); Terzopoulou et al. (2015)  
SPE GCxGC-MS (ToF) Pharmaceuticals, plasticizers, pesticides, benzothiazoles, benzotriazoles and benzosulfonamides Jover et al. (2009); Wanda et al. (2017); Glinski et al. (2018)  
SPME GC-EI-MS (tandem) Pesticides, parabens, triclosan and related chlorophenols Beceiro-González et al. (2007); Regueiro et al. (2009)  
SBSE HPLC-ESI-MS/MS (tandem) Polar and non-polar emerging and priority pollutants Aparicio et al. (2017)  
SBSE GCxGC-MS (ToF) Priority and emerging contaminants including: PCPs, pesticides, and aromatic hydrocarbons Gómez et al. (2011)  
LLE HPLC- FD   

EI: Electron impact; ESI: Electrospray ionization; FD: Fluorescence detection; GC: Gas chromatography; GCxGC: Two-dimensional gas chromatography; HPLC: High-performance liquid chromatography; LC: Liquid chromatography; LLE: Liquid–liquid extraction; MS: Mass spectrometry; PAD: Photodiode array detector; Q: Quadrupole; QqLIT: Quadrupole linear ion trap; SBSE: Stir bar sorptive extraction; SPE: Solid phase extraction; SPME: Solid phase microextraction; UHPLC: Ultra-high-performance liquid chromatography; UPLC: Ultra-performance liquid chromatography; ToF: Time of flight.

Pharmaceuticals

In recent years, the growing occurrence of pharmaceuticals (both human and veterinary) has been referred to as one of the most imperative environmental concerns (Carmona et al. 2014; Hernández et al. 2014; Kosma et al. 2014). It is known that these contaminants occur widely in the environment of industrialized countries (Beek et al. 2016) as a result of the significant volume of pharmaceuticals that are used by humans for the treatment of diseases, injuries, or illnesses.

In surface waters of the USA, Deo (2014) (various authors, various methodologies) reported the occurrence of 93 pharmaceuticals including: antibiotics, antidepressants, antihypertensives, analgesics, and others. Félix-Cañedo et al. (2013) (SPE-GC-EI-MS/MS-tandem) reported the presence of pharmaceuticals in Mexico City's surface waters including ibuprofen, diclofenac, naproxen, gemfibrozil and ketoprofen, and also addressed the higher concentration of these pharmaceuticals than those found in groundwater. In the middle of Lake Geneva, one of the largest European lakes, 14 pharmaceuticals were regularly detected in concentrations up to 0.37 μg/L for 6 years (Chèvre 2014) (various authors, various methodologies). In surface waters such as streams, ponds and lakes of India the occurrence of 15 pharmaceuticals has been detected (Gani & Kazmi 2016) (various authors, various methodologies). Nannou et al. (2015) elucidated the occurrence of 23 pharmaceuticals at different sample points along the river Kalamas and Lake Pamvotis region of Eripus, Greece (SPE-LC-ESI-MS). Similar observations were reported in the surface waters of the river Allier, France, detecting nine pharmaceuticals (Celle-Jeanton et al. 2014) (SPE-UHPLC-ESI-MS-Q-ToF) and in Lake Dongting, China, 12 pharmaceuticals were identified at concentrations of a few ng/L to a hundred ng/L (Ma et al. 2016) (SPE-UHPLC-ESI-MS-Q-ToF).

In summary, human pharmaceuticals are released in aquatic systems due to anthropogenic activities; therefore, these contaminants have been detected in many surface waters and the highest concentrations are found in densely urbanized areas, where the aquatic system is highly impacted by urban wastewater (Margot et al. 2015). The measured concentrations of some relevant pharmaceuticals in different surface waters are listed in Table 2.

Table 2

Occurrence of some relevant pharmaceuticals in different surface waters: main concentration and/or the highest concentration (in brackets)

CompoundConcentration (ng/L)Surface water locationAnalytical methodologyReference
Acetaminophen 123 (156) Pamvotis Lake and Kalamas River (Greece) SPE-LC-ESI-MS Nannou et al. (2015)  
243 Onya River (Spain) SPE-HPLC-ESI-MS (QqLIT) Gros et al. (2012)  
3,422 (4,460) Apatlaco River (Mexico) SPE-HPLC-ESI-MS/MS (tandem) Rivera-Jaimes et al. (2018)  
20.8 Hogsmill, Chertsey Bourne, and Blackwater Rivers (England) SPE-HPLC-ESI-MS/MS (tandem) Wilkinson et al. (2017)  
17.8 Dongjiang River (China) SPE-UHPLC-ESI-MS/MS (tandem) Yang et al. (2018)  
56 Missouri River (USA) SPE-HPLC-ESI-MS/MS (tandem) Wang et al. (2011)  
Carbamazepine 2.9 (5.8) Allier River (France) SPE-UHPLC-ESI-MS/MS (tandem) Celle-Jeanton et al. (2014)  
50.79 (63.36) Llobregat River (Spain) SPE-LC-ESI-MS (QqLIT) Osorio et al. (2012)  
29 Mkomazane River (South Africa) SPE-GCxGC-MS (ToF) Wanda et al. (2017)  
31.7 (214) Lis River (Portugal) SPE-UHPLC-ESI-MS/MS (tandem) Paíga et al. (2016)  
113 (325) Pamvotis Lake and Kalamas River (Greece) SPE-LC-ESI-MS Nannou et al. (2015)  
16 Grand River (Canada) SPE-LC-ESI-MS (tandem) Hao et al. (2006)  
Diclofenac 49 (3,462) Turia River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Carmona et al. (2014)  
(260) Fyris River (Sweden) SPE-UHPLC-ESI-MS (QToF) Gago-Ferrero et al. (2017)  
(52) Onyar River (Spain) SPE-HPLC-ESI-MS (QqLIT) Gros et al. (2012)  
40 (230) Dongting Lake (China) SPE-UHPLC-ESI-MS/MS (tandem) Ma et al. (2016)  
146 (457) Pamvotis Lake and Kalamas River (Greece) SPE-LC-ESI-MS Nannou et al. (2015)  
1,115 (1,398) Apatlaco River (Mexico) SPE-HPLC-ESI-MS/MS (tandem) Rivera-Jaimes et al. (2018)  
Ibuprofen 1,830 Rakkolanjoki River (Finland) SPE-LC-ESI-MS/MS (tandem) Meierjohann et al. (2016)  
380 Onya River (Spain) SPE-HPLC-ESI-MS (QqLIT) Gros et al. (2012)  
730 (1,106) Apatlaco River (Mexico) SPE-HPLC-ESI-MS/MS (tandem) Rivera-Jaimes et al. (2018)  
116 Dongjiang River (China) SPE-UHPLC-ESI-MS/MS (tandem) Yang et al. (2018)  
37.5 Mississippi River (USA) SPE-HPLC-ESI-MS/MS (tandem) Wang et al. (2011)  
53.7 (1,317) Lis River (Portugal) SPE-UHPLC-ESI-MS/MS (tandem) Paíga et al. (2016)  
Naproxen 1,687 Rakkolanjoki River (Finland) SPE-LC-ESI-MS/MS (tandem) Meierjohann et al. (2016)  
14.24 (114.04) Ebro River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Osorio et al. (2016)  
2.95 (12.21) Júcar River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Osorio et al. (2016)  
3.9 Dongting Lake (China) SPE-UHPLC-ESI-MS/MS (tandem) Ma et al. (2016)  
278 Turia River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Carmona et al. (2014)  
3,990 (4,820) Apatlaco River (Mexico) SPE-HPLC-ESI-MS/MS (tandem) Rivera-Jaimes et al. (2018)  
CompoundConcentration (ng/L)Surface water locationAnalytical methodologyReference
Acetaminophen 123 (156) Pamvotis Lake and Kalamas River (Greece) SPE-LC-ESI-MS Nannou et al. (2015)  
243 Onya River (Spain) SPE-HPLC-ESI-MS (QqLIT) Gros et al. (2012)  
3,422 (4,460) Apatlaco River (Mexico) SPE-HPLC-ESI-MS/MS (tandem) Rivera-Jaimes et al. (2018)  
20.8 Hogsmill, Chertsey Bourne, and Blackwater Rivers (England) SPE-HPLC-ESI-MS/MS (tandem) Wilkinson et al. (2017)  
17.8 Dongjiang River (China) SPE-UHPLC-ESI-MS/MS (tandem) Yang et al. (2018)  
56 Missouri River (USA) SPE-HPLC-ESI-MS/MS (tandem) Wang et al. (2011)  
Carbamazepine 2.9 (5.8) Allier River (France) SPE-UHPLC-ESI-MS/MS (tandem) Celle-Jeanton et al. (2014)  
50.79 (63.36) Llobregat River (Spain) SPE-LC-ESI-MS (QqLIT) Osorio et al. (2012)  
29 Mkomazane River (South Africa) SPE-GCxGC-MS (ToF) Wanda et al. (2017)  
31.7 (214) Lis River (Portugal) SPE-UHPLC-ESI-MS/MS (tandem) Paíga et al. (2016)  
113 (325) Pamvotis Lake and Kalamas River (Greece) SPE-LC-ESI-MS Nannou et al. (2015)  
16 Grand River (Canada) SPE-LC-ESI-MS (tandem) Hao et al. (2006)  
Diclofenac 49 (3,462) Turia River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Carmona et al. (2014)  
(260) Fyris River (Sweden) SPE-UHPLC-ESI-MS (QToF) Gago-Ferrero et al. (2017)  
(52) Onyar River (Spain) SPE-HPLC-ESI-MS (QqLIT) Gros et al. (2012)  
40 (230) Dongting Lake (China) SPE-UHPLC-ESI-MS/MS (tandem) Ma et al. (2016)  
146 (457) Pamvotis Lake and Kalamas River (Greece) SPE-LC-ESI-MS Nannou et al. (2015)  
1,115 (1,398) Apatlaco River (Mexico) SPE-HPLC-ESI-MS/MS (tandem) Rivera-Jaimes et al. (2018)  
Ibuprofen 1,830 Rakkolanjoki River (Finland) SPE-LC-ESI-MS/MS (tandem) Meierjohann et al. (2016)  
380 Onya River (Spain) SPE-HPLC-ESI-MS (QqLIT) Gros et al. (2012)  
730 (1,106) Apatlaco River (Mexico) SPE-HPLC-ESI-MS/MS (tandem) Rivera-Jaimes et al. (2018)  
116 Dongjiang River (China) SPE-UHPLC-ESI-MS/MS (tandem) Yang et al. (2018)  
37.5 Mississippi River (USA) SPE-HPLC-ESI-MS/MS (tandem) Wang et al. (2011)  
53.7 (1,317) Lis River (Portugal) SPE-UHPLC-ESI-MS/MS (tandem) Paíga et al. (2016)  
Naproxen 1,687 Rakkolanjoki River (Finland) SPE-LC-ESI-MS/MS (tandem) Meierjohann et al. (2016)  
14.24 (114.04) Ebro River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Osorio et al. (2016)  
2.95 (12.21) Júcar River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Osorio et al. (2016)  
3.9 Dongting Lake (China) SPE-UHPLC-ESI-MS/MS (tandem) Ma et al. (2016)  
278 Turia River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Carmona et al. (2014)  
3,990 (4,820) Apatlaco River (Mexico) SPE-HPLC-ESI-MS/MS (tandem) Rivera-Jaimes et al. (2018)  

Personal care products

PCPs include ingredients found in shampoos, washing lotions, skin care products, dental care products, sunscreen agents, cosmetics, perfumes etc. (Margot et al. 2015). Esters of p-hydroxybenzoic acid or parabens are a class of chemicals widely used as preservatives in cosmetics and pharmaceuticals (Guo et al. 2013). These compounds include bisphenol A and other esters such as methylparaben, ethylparaben, propylparaben etc. that have been used for decades (Czarczyńska-Goślińska et al. 2017). The occurrence of these compounds in surface water has been determined in several studies (Regueiro et al. 2009; Yamamoto et al. 2011; Renz et al. 2013).

Another compound used as an antimicrobial in soaps, deodorants, skin creams, toothpaste and plastics is triclosan, a biphenyl ether (McAvoy et al. 2002) that has been identified in surface water in many works of the consulted literature (Nishi et al. 2008; Lyndall et al. 2010; Bu et al. 2015; Petrie et al. 2016). Nonylphenol is an ultimate degradation product of nonylphenol polythoxylates that are also used in cleaning and industrial processes (Mao et al. 2012). This compound have been detected in some surface water (Jin et al. 2013; Kong et al. 2015; Terzopoulou et al. 2015; Cherniaev et al. 2016). The measured concentrations in surface water of bisphenol A, nonylphenol and triclosan, which are widely used in PCPs, are listed in Table 3.

Table 3

Occurrence of bisphenol A, nonylphenol and triclosan in different surface waters: main concentration and/or the highest concentration (in brackets)

CompoundConcentration (ng/L)Surface water locationAnalytical methodologyReference
Bisphenol A 83.9 (203.0) Langat River (Malaysia) SPE-GC-EI-MS Santhi et al. (2012)  
(277.9) Gizdepka River (Poland) SPE-HPLC-FD Staniszewska et al. (2015)  
25 (151) Jiyun, Hai, Duliu and Luann Rivers (China) SPE-GC-MS/MS (tandem) Kong et al. (2015)  
62.3 River water (England) SPE-UHPLC-ESI-MS/MS (tandem) Petrie et al. (2016)  
159 Hogsmill, Chertsey Bourne, and Blackwater Rivers (England) SPE-HPLC-ESI-MS/MS (tandem) Wilkinson et al. (2017)  
(7) Water of dams (Mexico) SPE-GC-EI-MS/MS (tandem) Félix-Cañedo et al. (2013)  
Nonylphenol 565 (2,622) Jiyun, Hai, Duliu and Luann Rivers (China) SPE-GC-MS/MS (tandem) Kong et al. (2015)  
50 Strymonas River (Greece) SPE-GC-EI-MS/MS (tandem) Terzopoulou et al. (2015)  
(1,240) Surface sea water of Amur Bay (Japan) LL-HPLC-FD Cherniaev et al. (2016)  
109.22 Hai River (China) SPE-GC-EI-MS Jin et al. (2013)  
288.75 Yangtze River (China) SPE-GC-EI-MS Jin et al. (2013)  
(655) Water of dams (Mexico) SPE-GC-EI-MS/MS (tandem) Félix-Cañedo et al. (2013)  
Triclosan 96.3 (163) Grand River (Canada) SPE-LC-ESI-MS/MS de Solla et al. (2016)  
105 Dongjiang River (China) SPE-UHPLC-ESI-MS/MS (tandem) Yang et al. (2018)  
Turia River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Carmona et al. (2014)  
3.5 Liaohe River (China) SPE-GC-EI-MS Bu et al. (2015)  
101 River water (England) SPE-UHPLC-ESI-MS/MS (tandem) Petrie et al. (2016)  
107.1 River water (Spain) SPME-GC-EI-MS (tandem) Regueiro et al. (2009)  
CompoundConcentration (ng/L)Surface water locationAnalytical methodologyReference
Bisphenol A 83.9 (203.0) Langat River (Malaysia) SPE-GC-EI-MS Santhi et al. (2012)  
(277.9) Gizdepka River (Poland) SPE-HPLC-FD Staniszewska et al. (2015)  
25 (151) Jiyun, Hai, Duliu and Luann Rivers (China) SPE-GC-MS/MS (tandem) Kong et al. (2015)  
62.3 River water (England) SPE-UHPLC-ESI-MS/MS (tandem) Petrie et al. (2016)  
159 Hogsmill, Chertsey Bourne, and Blackwater Rivers (England) SPE-HPLC-ESI-MS/MS (tandem) Wilkinson et al. (2017)  
(7) Water of dams (Mexico) SPE-GC-EI-MS/MS (tandem) Félix-Cañedo et al. (2013)  
Nonylphenol 565 (2,622) Jiyun, Hai, Duliu and Luann Rivers (China) SPE-GC-MS/MS (tandem) Kong et al. (2015)  
50 Strymonas River (Greece) SPE-GC-EI-MS/MS (tandem) Terzopoulou et al. (2015)  
(1,240) Surface sea water of Amur Bay (Japan) LL-HPLC-FD Cherniaev et al. (2016)  
109.22 Hai River (China) SPE-GC-EI-MS Jin et al. (2013)  
288.75 Yangtze River (China) SPE-GC-EI-MS Jin et al. (2013)  
(655) Water of dams (Mexico) SPE-GC-EI-MS/MS (tandem) Félix-Cañedo et al. (2013)  
Triclosan 96.3 (163) Grand River (Canada) SPE-LC-ESI-MS/MS de Solla et al. (2016)  
105 Dongjiang River (China) SPE-UHPLC-ESI-MS/MS (tandem) Yang et al. (2018)  
Turia River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Carmona et al. (2014)  
3.5 Liaohe River (China) SPE-GC-EI-MS Bu et al. (2015)  
101 River water (England) SPE-UHPLC-ESI-MS/MS (tandem) Petrie et al. (2016)  
107.1 River water (Spain) SPME-GC-EI-MS (tandem) Regueiro et al. (2009)  

Pesticides

According to their use, pesticides are classified generally into four categories: fungicides, herbicides, bactericides, and insecticides (Meffe & de Bustamante 2014) and are the main source of pesticide contamination through surface runoff from agricultural areas and by means of wastewaters in urban areas (Cahill et al. 2011). Atrazine, the most commonly used corn herbicide in the United States (Lozier et al. 2012), has been detected in surface waters, (Byer et al. 2011; Kong et al. 2015; Székács et al. 2015). Glinski et al. (2018) reported the pesticide metolachlor is the most frequently detected in surface water from the wetlands of the USA. Lari et al. (2014) reported that the pesticide chlorpyrifos showed the highest concentration in the surface water of agriculture-intensive areas in Bhandara, India. The concentrations in surface waters of the pesticides atrazine, metolachlor and chlorpyrifos are listed in Table 4.

Table 4

Occurrence of pesticides atrazine, metolachlor and chlorpyrifos in different surface waters: main concentration and/or the highest concentration (in brackets)

CompoundConcentration (ng/L)Surface water locationAnalytical methodologyReference
Atrazine 183 (1,829) Jiyun, Hai, Duliu and Luann Rivers (China) SPE-GC-EI-MS/MS (tandem) Kong et al. (2015)  
(1,650) Wetland water (USA) SPE-GCxGC-MS (ToF) Glinski et al. (2018)  
120 (3,910) Great Lakes (Canada) SPE-GC-EI-MS Byer et al. (2011)  
(15,000) Surface water (Hungary) SPE-GC-EI-MS Székács et al. (2015)  
(19) Mijares River (Spain) SPE-UHPLC-ESI-MS (QToF) Pitarch et al. (2016)  
130 (532) Surface water in rural area (China) SPE-UHPLC-ESI-MS/MS Yu et al. (2018)  
Metolachlor 90 (1,830) Great Lakes (Canada) SPE-GC-EI-MS Byer et al. (2011)  
(20) Landgraben, Rhine and Moselle Rivers and Tegel Lake (Germany) LC-ESI-MS (tandem) Hermes et al. (2018)  
(10,500) Wetland water (USA) SPE-GCxGC-MS (ToF) Glinski et al. (2018)  
(56,000) Surface water (Hungary) SPE-GC-EI-MS Székács et al. (2015)  
2,300 Strymonas River (Greece) SPE-GC-EI-MS/MS (tandem) Terzopoulou et al. (2015)  
348 (836) Water well (Brazil) SPE-GC-Nitrogen-phosphorus Dores et al. (2008)  
Chlorpyrifos (410) Surface water of agriculture area (India) LLE-GC-MS Lari et al. (2014)  
(3,700) Black Rascal Creek Not described Zhang et al. (2012)  
9,310 Lakes adjacent to agricultural fields (Bangladesh) LLE-HPLC-PAD Hossain et al. (2015)  
(729.5) Santa Clara River and Calleguas Creek (USA) LLE-GC-ESI-MS (tandem) Delgado-Moreno et al. (2011)  
Benfluralin (1,250) Wetland water (USA) SPE-GCxGC-MS (ToF) Glinski et al. (2018)  
Acetochlor (6,300) Surface water (Hungary) SPE-GC-EI-MS Székács et al. (2015)  
(166) Jiyun, Hai, Duliu and Luann Rivers (China) SPE-GC-EI-MS/MS (tandem) Kong et al. (2015)  
CompoundConcentration (ng/L)Surface water locationAnalytical methodologyReference
Atrazine 183 (1,829) Jiyun, Hai, Duliu and Luann Rivers (China) SPE-GC-EI-MS/MS (tandem) Kong et al. (2015)  
(1,650) Wetland water (USA) SPE-GCxGC-MS (ToF) Glinski et al. (2018)  
120 (3,910) Great Lakes (Canada) SPE-GC-EI-MS Byer et al. (2011)  
(15,000) Surface water (Hungary) SPE-GC-EI-MS Székács et al. (2015)  
(19) Mijares River (Spain) SPE-UHPLC-ESI-MS (QToF) Pitarch et al. (2016)  
130 (532) Surface water in rural area (China) SPE-UHPLC-ESI-MS/MS Yu et al. (2018)  
Metolachlor 90 (1,830) Great Lakes (Canada) SPE-GC-EI-MS Byer et al. (2011)  
(20) Landgraben, Rhine and Moselle Rivers and Tegel Lake (Germany) LC-ESI-MS (tandem) Hermes et al. (2018)  
(10,500) Wetland water (USA) SPE-GCxGC-MS (ToF) Glinski et al. (2018)  
(56,000) Surface water (Hungary) SPE-GC-EI-MS Székács et al. (2015)  
2,300 Strymonas River (Greece) SPE-GC-EI-MS/MS (tandem) Terzopoulou et al. (2015)  
348 (836) Water well (Brazil) SPE-GC-Nitrogen-phosphorus Dores et al. (2008)  
Chlorpyrifos (410) Surface water of agriculture area (India) LLE-GC-MS Lari et al. (2014)  
(3,700) Black Rascal Creek Not described Zhang et al. (2012)  
9,310 Lakes adjacent to agricultural fields (Bangladesh) LLE-HPLC-PAD Hossain et al. (2015)  
(729.5) Santa Clara River and Calleguas Creek (USA) LLE-GC-ESI-MS (tandem) Delgado-Moreno et al. (2011)  
Benfluralin (1,250) Wetland water (USA) SPE-GCxGC-MS (ToF) Glinski et al. (2018)  
Acetochlor (6,300) Surface water (Hungary) SPE-GC-EI-MS Székács et al. (2015)  
(166) Jiyun, Hai, Duliu and Luann Rivers (China) SPE-GC-EI-MS/MS (tandem) Kong et al. (2015)  

Hormones and antibiotics

Hormones and antibiotics are other compounds of emerging concern in water environments. The primary origin of steroidal hormones in the aquatic environment is human and animal defecation. In the long run, the natural and engineered hormones and their metabolites finally reach wastewater treatment plants (Barreiros et al. 2016; Gogoi et al. 2018). The hormone 17β-estradiol is an endogenous sex hormone, while the hormone 17α-ethinylestradiol is a highly potent receptor agonist used in oral contraceptives (Laurenson et al. 2014).

Similar to hormones, antibiotics are introduced to the aquatic environment mainly through wastewater (Szekeres et al. 2017). Many studies on the occurrence of hormones in the aquatic environment (Torres et al. 2015; Olatunji et al. 2017) and antibiotics (Bu et al. 2013; Deo 2014; Burke et al. 2016; Azanu et al. 2018) have confirmed the presence of these compounds in surface waters. The concentration in surface waters of the hormones 17β-estradiol, 17α-ethinylestradiol and the antibiotics ciprofloxacin and erythromycin are listed in Table 5.

Table 5

Occurrence of the hormones 17β-estradiol and 17α-ethinylestradiol and the antibiotics ciprofloxacin and erythromycin in different surface waters: main concentration and/or the highest concentration (in brackets)

CompoundConcentration (ng/L)Surface water locationAnalytical methodologyReference
17β-estradiol 3,700 Swart River (South Africa) SPE-UHPLC-PAD Olatunji et al. (2017)  
1.7 Pearl River (China) SPE-GC-EI-MS Gong et al. (2009)  
(56) Piracicaba River (Brazil) SPE-HPLC-ESI-MS/MS (tandem) Torres et al. (2015)  
1.91 Pontchartrain Lake (USA) SPE-GC-MS Wang et al. (2012)  
(1.56) Yungang Lagoon (China) SPE-GC-MS Zhang et al. (2011)  
(19) Streams in agricultural area (USA) SPE-GC-MS Velicu & Suri (2009)  
17α-ethinylestradiol (100) Piracicaba River (Brazil) SPE-HPLC-ESI-MS/MS (tandem) Torres et al. (2015)  
(0.43) Yungang Lagoon (China) SPE-GC-MS Zhang et al. (2011)  
Ciprofloxacin (1,168) Wiwi and Oda Rivers (Ghana) SPE-HPLC-MS/MS Azanu et al. (2018)  
1.55 (20) Llobregat River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Osorio et al. (2016)  
1.12 (16.34) Ebro River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Osorio et al. (2016)  
(740) Surface water (Costa Rica) SPE-HPLC-ESI-MS/MS (tandem) Spongberg et al. (2011)  
5.8 Taihu Lake (Taiwan) SPE-HPLC-ESI-MS/MS (tandem) Lai et al. (2016)  
(60.3) Baiyangdian Lake (China) SPE-HPLC-ESI-MS/MS (tandem) Li et al. (2012)  
Erythromycin 1.85 (12.66) Llobregat River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Osorio et al. (2016)  
1.29 (18.58) Ebro River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Osorio et al. (2016)  
(1,149) Wiwi and Oda Rivers (Ghana) SPE-HPLC-MS Azanu et al. (2018)  
183 Dongjiang River (China) SPE-UHPLC-ESI-MS/MS (tandem) Yang et al. (2018)  
1.05 Grand River (Canada) SPE-PLC-ESI-MS/MS de Solla et al. (2016)  
3.4 Lunghu Lake (Taiwan) SPME-GC-EI-MS/MS (tandem) Lai et al. (2016)  
CompoundConcentration (ng/L)Surface water locationAnalytical methodologyReference
17β-estradiol 3,700 Swart River (South Africa) SPE-UHPLC-PAD Olatunji et al. (2017)  
1.7 Pearl River (China) SPE-GC-EI-MS Gong et al. (2009)  
(56) Piracicaba River (Brazil) SPE-HPLC-ESI-MS/MS (tandem) Torres et al. (2015)  
1.91 Pontchartrain Lake (USA) SPE-GC-MS Wang et al. (2012)  
(1.56) Yungang Lagoon (China) SPE-GC-MS Zhang et al. (2011)  
(19) Streams in agricultural area (USA) SPE-GC-MS Velicu & Suri (2009)  
17α-ethinylestradiol (100) Piracicaba River (Brazil) SPE-HPLC-ESI-MS/MS (tandem) Torres et al. (2015)  
(0.43) Yungang Lagoon (China) SPE-GC-MS Zhang et al. (2011)  
Ciprofloxacin (1,168) Wiwi and Oda Rivers (Ghana) SPE-HPLC-MS/MS Azanu et al. (2018)  
1.55 (20) Llobregat River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Osorio et al. (2016)  
1.12 (16.34) Ebro River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Osorio et al. (2016)  
(740) Surface water (Costa Rica) SPE-HPLC-ESI-MS/MS (tandem) Spongberg et al. (2011)  
5.8 Taihu Lake (Taiwan) SPE-HPLC-ESI-MS/MS (tandem) Lai et al. (2016)  
(60.3) Baiyangdian Lake (China) SPE-HPLC-ESI-MS/MS (tandem) Li et al. (2012)  
Erythromycin 1.85 (12.66) Llobregat River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Osorio et al. (2016)  
1.29 (18.58) Ebro River (Spain) SPE-UHPLC-ESI-MS/MS (tandem) Osorio et al. (2016)  
(1,149) Wiwi and Oda Rivers (Ghana) SPE-HPLC-MS Azanu et al. (2018)  
183 Dongjiang River (China) SPE-UHPLC-ESI-MS/MS (tandem) Yang et al. (2018)  
1.05 Grand River (Canada) SPE-PLC-ESI-MS/MS de Solla et al. (2016)  
3.4 Lunghu Lake (Taiwan) SPME-GC-EI-MS/MS (tandem) Lai et al. (2016)  

SOME NEW EMERGING CONTAMINANTS

As a consequence of increasing industrial activities, concern over new ECs has increased, for instance, from hydraulic fracturing (also called hydro-fracking or fracking) in which millions of gallons of water and additionally surfactants, sand and chemicals (including biocides) are injected by high pressure deep into the ground to fracture shales and extract gas into horizontally drilled wells (Richardson & Ternes 2018). The consequence of this polluting activity could be a new source of ECs in the aquatic environment, such as in surface waters.

Some other groups of contaminants are also emerging, for instance, manufactured nanoparticles and treatment by-products. The challenge for the assessment of the environmental analysis of nanoparticles is in how to measure them because they cannot be filtered out using conventional processes (Sauvé & Desrosiers 2014). Regarding treatment by-products as from chlorination commonly used as disinfectant, a risk is posed as it may lead to formation of trihalomethanes and haloacetic acids (Fakour & Lo 2018).

CONCLUSIONS

ECs have been detected in surface waters around the world, pharmaceuticals and PCPs being reported with the highest incidence in water bodies.

The techniques that have shown greatest extraction capacity for ECs are SPME and SPE, the latter being most used because of the good retention capacity of a wider polarity spectrum of analytes and less dissolvent consumption. Regarding chromatographic techniques, LC and GC are the most used techniques. Nevertheless, UHPLC should be mentioned as a recently reported and highly efficient technique in the detection of ECs since it allows improvement in the sensitivity and resolution of signals.

With regard to the detection of ECs, techniques have been used that couple to mass spectrometry due to its high sensitivity since the concentration of ECs in surface waters tends to be very low, although interestingly, detection by PAD has also been reported.

This review contains valuable information about ECs in surface waters and seeks to provide EC inventories in concise terms to the scientific community for the purposes of the analysis of ECs and drinking water management.

ACKNOWLEDGEMENTS

The authors wish to express their gratitude for financial support from the National Council of Science and Technology (CONACYT) who supported this research through the grant projects PDCPN2014-01-248408 and CB2016 287242. The work team dedicates this review to the memory of their colleague Dr Alberto López-López (RIP).

REFERENCES

REFERENCES
Agilent Technologies
2013
Sample Preparation Fundamentals for Chromatography
.
Agilent Technologies Inc.
,
Canada
.
Agüera
A.
,
Bueno
M.
,
Fernández-Alba
A.
2013
New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters
.
Environmental Science and Pollution Research
20
,
3496
3515
.
DOI: 10.1007/s11356-013-1586-0
.
Afonso-Olivares
C.
,
Torres-Padrón
E.
,
Sosa-Ferrara
Z.
,
Santana-Rodríguez
J.
2013
Assessment of the presence of pharmaceutical compounds in seawater samples from coastal area of Gran Canaria island (Spain)
.
Antibiotics
2
,
274
287
.
DOI: 10.3390/antibiotics2020274
.
Alygizakis
N.
,
Samanipour
S.
,
Hollender
J.
,
Ibáñez
M.
,
Kaserzon
S.
,
Vokkali
V.
,
van Leerdam
J.
,
Mueller
J.
,
Pijnappels
M.
,
Reid
M.
,
Schymanski
E.
,
Slobodnik
J.
,
Thomaidis
N.
,
Thomas
K.
2018
Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry
.
Environmental Science and Technology
52
,
5135
5144
.
DOI: 10.1021/acs.est.8b00365
.
Aparicio
I.
,
Martín
J.
,
Santos
J.
,
Malvar
J.
,
Alonso
E.
2017
Stir bar sorptive extraction and liquid chromatography–tandem mass spectrometry determination of polar and non-polar emerging and priority pollutants in environmental waters
.
Journal of Chromatography A
1500
,
43
52
.
DOI: 10.1016/j.chroma.2017.04.007
.
Azanu
D.
,
Styrishave
B.
,
Darko
G.
,
Weisser
J.
,
Abaidoo
R.
2018
Occurrence and risk assessment of antibiotics in water and lettuce in Ghana
.
Science of the Total Environment
622–623
,
239
305
.
DOI: 10.1016/j.cscitotenv.2017.111.287
.
Banerjee
S.
,
Mazumdar
S.
2012
Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte
.
International Journal of Analytical Chemistry
2012
,
282574
.
DOI: 10.1155/2012/282574
.
Barreiros
L.
,
Queiroz
J.
,
Magalhaes
L.
,
Silva
A.
,
Segundo
M.
2016
Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices – a review
.
Microchemical Journal
126
,
243
262
.
DOI: 10.1016/j.microc.2015.12.003
.
Beceiro-González
E.
,
Concha-Graña
E.
,
Guimaraes
A.
,
Gonçalves
C.
,
Munitategui-Lorenzo
S.
,
Alpendurada
M.
2007
Optimisation and validation of a solid-phase microextraction method for simultaneous determination of different types of pesticides in water by gas chromatography–mass spectrometry
.
Journal of Chromatography A
1141
,
165
173
.
DOI: 10.1016/j.chroma.2006.12.042
.
Beek
T.
,
Webber
F.-A.
,
Bergmann
A.
,
Hickmann
S.
,
Ebert
I.
,
Hein
A.
,
Küster
A.
2016
Pharmaceuticals in the environment – global occurrences and perspectives
.
Environmental Toxicology and Chemistry
35
,
823
835
.
DOI: 10.1002/etc.3339
.
Bu
Q.
,
Wang
B.
,
Huang
J.
,
Deng
S.
,
Yu
G.
2013
Pharmaceuticals and personal care products in the aquatic environment in China: a review
.
Journal of Hazardous Materials
262
,
189
211
.
DOI: 10.1016/j.jhazmat.2013.08.040
.
Bu
Q.
,
Luo
Q.
,
Wang
D.
,
Rao
K.
,
Wang
Z.
,
Yu
G.
2015
Screening for over 1000 organic micropollutants in surface water and sediments in the Liaohe River watershed
.
Chemosphere
138
,
519
525
.
DOI: 10.1016/j.chemosphere.2015.07.013
.
Burke
V.
,
Richter
D.
,
Greskowiak
J.
,
Mehrtens
A.
,
Schulz
L.
,
Massmann
G.
2016
Occurrence of antibiotics in surface and groundwater of a drinking water catchment area in Germany
.
Water Environment Research
88
,
652
659
.
DOI: 10.2175/1061143016X14609975746604
.
Byer
J.
,
Struger
J.
,
Sverko
E.
,
Klawunn
P.
,
Todd
A.
2011
Spatial and seasonal variations in atrazine and metolachlor surface water concentrations in Ontario (Canada) using ELISA
.
Chemosphere
82
,
1155
1160
.
DOI: 10.1016/j.chemosphere.2010.12.054
.
Cahill
M.
,
Caprioli
G.
,
Stack
M.
,
Vittori
S.
,
James
K.
2011
Semi-automated liquid chromatography–mass spectrometry (LC–MS/MS) method for basic pesticides in wastewater effluents
.
Analytical and Bioanalytical Chemistry
400
,
587
594
.
DOI: 10.1007/s00216-011-4781-1
.
Calza
P.
,
Medana
C.
,
Padovano
E.
,
Giancotti
V.
,
Minero
C.
2013
Fate of selected pharmaceuticals in river waters
.
Environmental Science and Pollution Research
20
,
2262
2270
.
DOI: 10.1007/s11356-012-1097-4
.
Carmona
E.
,
Andreu
V.
,
Picó
Y.
2014
Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: from waste to drinking water
.
Science of the Total Environment
484
,
53
63
.
DOI: 10.1016/j.scitotenv.2014.02.085
.
Celle-Jeanton
H.
,
Schemberg
D.
,
Mohammed
N.
,
Huneau
F.
,
Bertrand
G.
,
Lavastre
V.
,
Le Coustumer
P.
2014
Evaluation of pharmaceuticals in surface water: reliability of PECs compared to MECs
.
Environment International
73
,
10
21
.
DOI: 10.1016/j.envint.2014.06.015
.
Chauveau-Duriot
B.
,
Doreau
M.
,
Nozière
P.
,
Graulet
B.
2010
Simultaneous quantification of carotenoids, retinol, and tocopherols in forages, bovine plasma, and milk: validation of a novel UPLC method
.
Analytical and Bioanalytical Chemistry
397
,
777
790
.
DOI: 10.1007/s00216-010-3594-y
.
Cherniaev
A.
,
Kondakova
A.
,
Zyk
E.
2016
Contents of 4-nonylphenol in surface sea water of Amur Bay (Japan/East sea)
.
Achievements in the Life Sciences
10
,
65
71
.
DOI: 10.1016/j.als.2016.05.006
.
Czarczyńska-Goślińska
B.
,
Zgoła-Grześkowiak
A.
,
Jeszka-Skowron
M.
,
Frankowski
R.
,
Grsześkowiak
T.
2017
Detection of bisphenol A, cumylphenol and parabens in surface waters of Greater Poland Voivodeship
.
Journal of Environmental Management
204
,
50
60
.
DOI: 10.1016/j.jenvman.2017.08.034
.
Deo
R.
2014
Pharmaceuticals in the surface water of the USA: a review
.
Current Environmental Health Reports
1
,
113
122
.
DOI: 10.1007/s40572-014-0015-y
.
Delgado-Moreno
L.
,
Lin
K.
,
Veiga-Nascimento
R.
,
Gan
J.
2011
Occurrence and toxicity of three classes of insecticides in water and sediment in two southern California coastal watersheds
.
Journal of Agricultural and Food Chemistry
59
,
9448
9456
.
DOI: 10.1021/jf202049s
.
De Gerónimo
E.
,
Aparicio
V.
,
Bárbaro
S.
,
Portocarrero
R.
,
Jaime
S.
,
Costa
J.
2014
Presence of pesticides in surface water from four sub-basins in Argentina
.
Chemosphere
107
,
423
431
.
DOI: 10.1016/j.chemosphere.2014.01.039
.
de Solla
S.
,
Gilroy
È.
,
Klinck
J.
,
King
L.
,
Mclnnis
R.
,
Struger
J.
,
Backus
S.
,
Gillis
P.
2016
Bioaccumulation of pharmaceuticals and personal care products in the unionid mussel Lasmigona costata in a river receiving wastewater effluent
.
Chemosphere
146
,
486
496
.
DOI: 10.1016/j.chemosphere.2015.12.022
.
Dores
E.
,
Carbo
L.
,
Ribeiro
M.
,
De-Lamonica-Freire
E.
2008
Pesticide levels in ground and surface waters of Primavera do Leste region, Mato Grosso, Brazil
.
Journal of Chromatographic Science
46
,
585
590
.
DOI: 10.1093/chromsci/46.7.585
.
Ebele
A.
,
Abdallah
M.
,
Harrad
S.
2017
Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment
.
Emerging Contaminants
3
(
1
),
1
16
.
DOI: 10.1016/j.emcon.2016.12.004
.
Edjere
O.
,
Asibor
I.
,
Otolo
S.
2016
Evaluation of the levels of phthalate ester plasticizers in surface water of Ethiope River system, Delta State, Nigeria
.
Journal of Applied Sciences and Environmental Management
20
,
608
614
.
DOI: 10.4314/jasem.v20i3.15
.
Edwards
M.
,
Mostafa
A.
,
Górecki
T.
2011
Modulation in comprehensive two-dimensional gas chromatography: 20 years of innovation
.
Analytical and Bioanalytical Chemistry
401
,
2335
2349
.
DOI: 10.1007/s00216-011-5100-6
.
Fakour
H.
,
Lo
S.
2018
Formation of trihalomethanes as disinfection byproducts in herbal spa pools
.
Scientific Reports
8
,
5709
.
DOI: 10.1038/s41598-018-23975-2
.
Félix-Cañedo
T.
,
Durán-Álvarez
J.
,
Jiménez-Cisneros
B.
2013
The occurrence and distribution of a group of organic micropollutants in Mexico City's water sources
.
Science of the Total Environment
454–455
,
109
118
.
DOI: 10.1016/j.scitotenv.2013.02.088
.
Gani
K.
,
Kazmi
A.
2016
Contamination of emerging contaminants in Indian aquatic sources: first overview of the situation
.
Journal of Hazardous, Toxic, and Radioactive Waste
21
(
3
),
1
12
.
DOI: 10.1016/(ASCE)HZ.2153-5515.0000348
.
Glinski
D.
,
Purucker
S.
,
Van Meter
R.
,
Black
M.
,
Henderson
M.
2018
Analysis of pesticides in surface water, stemflow, and throughfall in an agricultural area in South Georgia, USA
.
Chemosphere
209
,
496
507
.
DOI: 10.1016/j.chemosphere.2018.06.116
.
Gogoi
A.
,
Mazumder
P.
,
Tyagi
V.
,
Chaminda
G.
,
An
A.
,
Kumar
M.
2018
Occurrence and fate of emerging contaminants in water environment: a review
.
Groundwater for Sustainable Development
6
,
169
180
.
DOI: 10.1016/j.gsd.2017.12.009
.
Gong
J.
,
Ran
Y.
,
Chen
D.
,
Yang
Y.
,
Ma
X.
2009
Occurrence and environmental risk of endocrine-disrupting chemicals in surface waters of the Pearl River, South China
.
Environmental Monitoring and Assessment
156
,
199
210
.
DOI: 10.1007/s10661-008-0474-4
.
Guillarme
D.
,
Nguyen
D.
,
Rudaz
S.
,
Veuthey
J.-L.
2007
Recent developments in liquid chromatography – impact on qualitative and quantitative performance
.
Journal of Chromatography A
1149
,
20
29
.
DOI: 10.1016/j.chroma.2006.11.014
.
Guo
Y.
,
Wang
L.
,
Kannan
K.
2013
Phthalates and parabens in personal care products from China: concentrations and human exposure
.
Archives of Environmental Contamination and Toxicology
66
(
1
),
113
119
.
DOI: 10.1007/s00244-013-9937-x
.
Hao
C.
,
Lissemore
L.
,
Nguyen
B.
,
Kleywegt
S.
,
Yang
P.
,
Solomon
K.
2006
Determination of pharmaceuticals in environmental waters by liquid chromatography/electrospray ionization/tandem mass spectrometry
.
Analytical and Bioanalytical Chemistry
384
,
505
513
.
DOI: 10.1007/s00216-005-0199-y
.
Hartmann
J.
,
van der Aa
M.
,
Wuijts
S.
,
de Roda Husman
A.
,
van der Hoek
J.
2018
Risk governance of potential emerging risks to drinking water quality: analysing current practices
.
Environmental Science and Policy
84
,
97
104
.
DOI: 10.1016/j.envsci.2018.02.015
.
Hernández
F.
,
Ibañez
M.
,
Bade
R.
,
Bijlsma
L.
,
Sancho
J.
2014
Investigation of pharmaceuticals and illicit drugs in waters by liquid chromatography-high-resolution mass spectrometry
.
Trends in Analytical Chemistry
63
,
140
157
.
DOI: 10.1016/j.trac.2014.08.003
.
Ho
C.
,
Lam
C.
,
Chan
M.
,
Cheung
R.
,
Law
L.
,
Lit
L.
,
Ng
K.
,
Suen
M.
,
Tai
H.
2003
Electrospray ionisation mass spectrometry: principles and clinical applications
.
Clinical Biochemist Reviews
24
,
3
12
.
Hossain
M.
,
Chowdhury
M.
,
Pramanik
M.
,
Rahman
M.
,
Fakhruddin
A.
,
Alam
M.
2015
Determination of selected pesticides in water samples adjacent to agricultural fields and removal of organophosphorus insecticide chlorpyrifos using soil bacterial isolates
.
Applied Water Science
5
(
2
),
171
179
.
DOI: 10.1007/s13201-014-0178-6
.
Jin
X.
,
Wang
Y.
,
Jin
W.
,
Rao
K.
,
Giesy
J.
,
Hollert
H.
,
Richardson
K.
,
Wang
Z.
2013
Ecological risk of nonylphenol in China surface waters based on reproductive fitness
.
Environmental Science and Technology
48
,
1256
1262
.
DOI: 10.1021/es403781z
.
John
V.
,
Jain
P.
,
Rahate
M.
,
Labhasetwar
P.
2014
Assessment of deterioration in water quality from source to household storage in semi-urban settings of developing countries
.
Environmental Monitoring and Assessment
186
,
725
734
.
DOI: 10.1007/s10661-013-3412-z
.
Kabir
A.
,
Mesa
R.
,
Jurmain
J.
,
Furton
K.
2017
Fabric phase sorptive extraction explained
.
Separations
4
,
21
.
DOI: 10.3390/separations4020021
.
Kanani
H.
,
Chrysanthopoulos
P.
,
Klapa
M.
2008
Standardizing GC-MS metabolomics
.
Journal of Chromatography B
871
,
191
201
.
DOI: 10.1016/j.chromb.2008.04.049
.
Kong
L.
,
Kadokami
K.
,
Wang
S.
,
Duong
H.
,
Chau
H.
2015
Monitoring of 1300 organic micro-pollutants in surface waters from Tianjin, North China
.
Chemosphere
122
,
125
130
.
DOI: 10.1016/j.chemosphere.2014.11.025
.
Kosma
C.
,
Lambropoulou
D.
,
Albanis
T.
2014
Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment
.
Science of the Total Environment
466–467
,
421
438
.
DOI: 10.1016/j.scitotenv.2013.07.044
.
Lai
W.
,
Lin
Y.
,
Tung
H.
,
Lo
S.
,
Lin
A.
2016
Occurrence of pharmaceuticals and perfluorinated compounds and evaluation of the availability of reclaimed water in Kinmen
.
Emerging Contaminants
2
,
135
144
.
DOI: 10.1016/j.emcon.2016.05.001
.
Lari
S.
,
Khan
N.
,
Ghandi
K.
,
Meshram
T.
,
Thacker
N.
2014
Comparision of pesticide residues in surface water and ground water of agriculture intensive areas
.
Journal of Environmental Health Science & Engineering
12
,
11
.
DOI: 10.1186/2052-336X-12-11
.
Laurenson
J.
,
Bloom
R.
,
Page
S.
,
Sadrieh
N.
2014
Ethinyl estradiol and other pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data
.
The AAPS Journal
16
,
299
310
.
DOI: 10.1208/s12248-014-9561-3
.
Leonhardt
J.
,
Teutenberg
T.
,
Tuerk
J.
,
Schlüsener
M.
,
Ternes
T.
,
Schmidt
T.
2015
A comparison of one-dimensional and microscale two-dimensional liquid chromatographic approaches coupled to high resolution mass spectrometry for the analysis of complex samples
.
Analytical Methods
7
,
7697
7706
.
DOI: 10.1039/c5ay01143d
.
Li
W.
,
Shi
Y.
,
Gao
L.
,
Liu
J.
,
Cai
Y.
2012
Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China
.
Chemosphere
89
,
1307
1315
.
DOI: 10.1016/j.chemosphere.2012.05.079
.
Lozier
M.
,
Curwin
B.
,
Nishioka
M.
,
Sanderson
W.
2012
Determinants of atrazine contamination in the homes of commercial pesticide applicators across time
.
Journal of Occupational and Environmental Hygiene
9
,
289
297
.
DOI: 10.1080/15459624.2012.668658
.
Luo
Y.
,
Guo
W.
,
Ngo
H.
,
Nghiem
L.
,
Hai
F.
,
Zhang
J.
,
Liang
S.
,
Wang
X.
2014
A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment
.
Science of the Total Environment
473–474
,
619
641
.
DOI: 10.1016/j.scitotenv.2013.12.065
.
Lyndall
J.
,
Fuchsman
P.
,
Bock
M.
,
Barber
T.
,
Lauren
D.
,
Leigh
K.
,
Perruchon
E.
,
Capdevielle
M.
2010
Probabilistic risk evaluation for triclosan in surface water, sediments and aquatic biota tissues
.
Integrated Environmental Assessment and Management
6
(
3
),
419
440
.
DOI: 10.1897/ieam_2009-072.1
.
Ma
R.
,
Wang
B.
,
Lu
S.
,
Zhang
Y.
,
Yin
L.
,
Huang
J.
,
Deng
S.
,
Wang
Y.
,
Yu
G.
2016
Characterization of pharmaceutically active compounds in Dongting Lake, China: occurrence, chiral profiling and environmental risk
.
Science of the Total Environment
557–558
,
268
275
.
DOI: 10.1016/j.scitotenv.2016.03.053
.
Mao
Z.
,
Zheng
X.
,
Zhang
Y.
,
Tao
X.
,
Li
Y.
,
Wang
W.
2012
Occurrence and biodegradation of nonylphenol in the environment
.
International Journal of Molecular Sciences
13
,
491
505
.
DOI: 10.3390/ijms13010491
.
Margot
J.
,
Rossi
L.
,
Barry
D.
,
Holliger
C.
2015
A review of the fate of micropollutants in wastewater treatment plants
.
WIREs Water
2
,
457
487
.
DOI: 10.1002/wat2.1090
.
McAvoy
D.
,
Schatowitz
B.
,
Jacob
M.
,
Hauk
A.
,
Eckhoff
W.
2002
Measurement of triclosan in wastewater treatment systems
.
Environmental Toxicology and Chemistry
21
,
1323
1329
.
DOI: 10.1002/etc.5620210701
.
Meffe
R.
,
de Bustamante
I.
2014
Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy
.
Science of the Total Environment
481
,
280
295
.
DOI: 10.1016/j.scitotenv.2014.02.053
.
Meierjohann
A.
,
Brozinski
J.-M.
,
Kronberg
L.
2016
Seasonal variation of pharmaceutical concentrations in a river/lake system in eastern Finland
.
Environmental Science: Processes & Impacts
18
(
3
),
342
349
.
DOI: 10.1039/c5em00505a
.
Munz
N.
,
Burdon
F.
,
de Zwart
D.
,
Junghans
M.
,
Melo
L.
,
Reyes
M.
,
Schönenberger
U.
,
Singer
H.
,
Spycher
B.
,
Hollender
J.
,
Stamm
C.
2017
Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions
.
Water Research
110
,
366
377
.
DOI: 10.1016/j.watres.2016.11.001
.
Nannou
C.
,
Kosma
C.
,
Albanis
T.
2015
Occurrence of pharmaceuticals in surface waters: analytical method development and environmental risk assessment
.
International Journal of Environmental Analytical Chemistry
95
(
13
),
1242
1262
.
DOI: 10.1080/03067319.2015.1085520
.
Nishi
I.
,
Kawakami
T.
,
Onodera
S.
2008
Monitoring of triclosan in the surface water of the Tone Canal, Japan
.
Bulletin of Environmental Contamination and Toxicology
80
,
163
166
.
DOI: 10.1007/s00128-007-9338-9
.
Olatunji
O.
,
Fatoki
O.
,
Opeolu
B.
,
Ximba
B.
,
Chitongo
R.
2017
Determination of selected steroid hormones in some surface water around animal farms in Cape Town using HPLC-DAD
.
Environmental Monitoring and Assessment
189
,
363
.
DOI: 10.1007/s10661-017-6070-8
.
Organtini
K.
,
Myers
A.
,
Jobst
K.
,
Cochran
J.
,
Ross
B.
,
McCarry
B.
,
Reiner
E.
,
Dorman
F.
2014
Comprehensive characterization of the halogenated dibenzo-p-dioxin and dibenzofuran contents of residential fire debris using comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry
.
Journal of Chromatography A
1369
,
138
146
.
DOI: 10.1016/j.chroma.2014.09.088
.
Osorio
V.
,
Marcé
R.
,
Pérez
S.
,
Ginebrada
A.
,
Cortina
J.
,
Barceló
D.
2012
Occurrence and modeling of pharmaceuticals on a sewage-impacted Mediterranean river and their dynamics under different hydrological conditions
.
Science of the Total Environment
440
,
3
13
.
DOI: 10.1016/j.scitotenv.2012.08.040
.
Osorio
V.
,
Larrañaga
A.
,
Aceña
J.
,
Pérez
S.
,
Barceló
D.
2016
Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers
.
Science of the Total Environment
540
,
267
277
.
DOI: 10.1016/j.scitotenv.2015.06.143
.
Paíga
P.
,
Santos
L.
,
Ramos
S.
,
Jorge
S.
,
Silva
J.
,
Delerue-Matos
C.
2016
Presence of pharmaceuticals in the Lis river (Portugal): sources, fate and seasonal variation
.
Science of the Total Environment
573
,
164
177
.
DOI: 10.1016/j.scitotenv.2016.08.089
.
Pawliszyn
J.
2012
Handbook of Solid Phase Microextraction
.
Elsevier
,
Waltham, MA, USA
.
Petrie
B.
,
Youdan
J.
,
Barden
R.
,
Kasprzyk-Horderrn
B.
2016
Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry
.
Journal of Chromatography A
1431
,
64
78
.
DOI: 10.1016/j.chroma.2015.12.036
.
Petrovic
M.
,
Barceló
D.
2013
Liquid chromatography–tandem mass spectrometry
.
Analytical and Bioanalytical Chemistry
405
,
5857
5858
.
DOI: 10.1007/s00216-013-7018-7
.
Picó
Y.
,
Barceló
D.
2015
Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon
.
Analytical and Bioanalytical Chemistry
407
,
6257
6273
.
DOI: 10.1007/s00216-015-8739-6
.
Pitarch
E.
,
Cervera
M.
,
Portolés
T.
,
Ibañez
M.
,
Barreda
M.
,
Renau-Pruñonosa
A.
,
Morell
I.
,
López
F.
,
Albarrán
F.
,
Hernández
F.
2016
Comprehensive monitoring of organic micro-pollutants in surface and groundwater in the surrounding of a solid-waste treatment plant of Castellón, Spain
.
Science of the Total Environment
548–549
,
211
220
.
DOI: 10.1016/j.scitotenv.2015.12.166
.
Prebihalo
S.
,
Brockman
A.
,
Cochran
J.
,
Dorman
F.
2015
Determination of emerging contaminants in wastewater utilizing comprehensive two-dimensional gas-chromatography coupled with time-of-flight mass spectrometry
.
Journal of Chromatography A
1419
,
109
115
.
DOI: 10.1016/j.chroma.2015.09.080
.
Reemtsma
T.
,
Quintana
J.
2006
Analytical methods for polar pollutants
. In:
Organic Pollutants in the Water Cycle
(
Reemtsma
T.
,
Jekel
M.
, eds),
Wiley
,
Weinheim, Germany, pp. 1–40. DOI: 10.1002/352760877X.ch1
.
Renz
L.
,
Volz
C.
,
Michanowicz
D.
,
Ferrar
K.
,
Christian
C.
,
Lenzner
D.
,
El-Hefnawy
T.
2013
A study of parabens and bisphenol A in surface water and fish brain tissue from the Greater Pittsburgh Area
.
Ecotoxicology
22
,
632
641
.
DOI: 10.1007/s10646-013-1054-0
.
Richardson
S.
,
Ternes
T.
2018
Water analysis: emerging contaminants and current issues
.
Analytical Chemistry
90
,
398
428
.
DOI: 10.1021/ac9008012
.
Riva
F.
,
Castiglioni
S.
,
Fattore
E.
,
Manenti
A.
,
Davoli
E.
,
Zuccato
E.
2018
Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk
.
International Journal of Hygiene and Environmental Health
221
,
451
457
.
DOI: 10.1016/j.ijheh.2018.01.008
.
Rivera-Jaimes
J.
,
Postigo
C.
,
Melgoza-Alemán
R.
,
Aceña
J.
,
Barceló
D.
,
de Alda
M.
2018
Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: occurrence and environmental risk assessment
.
Science of the Total Environment
613–614
,
1263
1274
.
DOI: 10.1016/j.scitotenv.2017.09.134
.
Rodriguez-Lafuente
A.
,
Piri-Moghadam
H.
,
Lord
H.
,
Obal
T.
,
Pawliszyn
J.
2016
Inter-laboratory validation of automated SPME-GC/MS for determination of pesticides in surface and ground water samples: sensitive and green alternative to liquid–liquid extraction
.
Water Quality Research Journal of Canada
51
(
4
),
331
343
.
DOI: 10.2166/wqrjc.2016.011
.
Rosen
R.
2007
Mass spectrometry for monitoring micropollutants in water
.
Current Opinion in Biotechnology
18
,
246
251
.
DOI: 10.1016/j.copbio.2007.03.005
.
Salvatierra-Stamp
V.
,
Ceballos-Magaña
S.
,
Gonzalez
J.
,
Jurado
J.
,
Muñiz-Valencia
R.
2015
Emerging contaminant determination in water samples by liquid chromatography using a monolithic column coupled with a photodiode array detector
.
Analytical and Bioanalytical Chemistry
407
,
4661
4670
.
DOI: 10.1007/s00216-015-8666-6
.
Santhi
V.
,
Sakai
N.
,
Ahmad
E.
,
Mustafa
A.
2012
Occurrence of bisphenol A in surface water, drinking water and plasma from Malaysia with exposure assessment from consumption of drinking water
.
Science of the Total Environment
427–428
,
332
338
.
DOI: 10.1016/j.scitotenv.2012.04.041
.
Sauvé
S.
,
Desrosiers
M.
2014
A review of what is an emerging contaminant
.
Chemistry Central Journal
8
,
15
.
DOI: 10.1186/1752-153X-8-15
.
Selvaraj
K.
,
Sundaramoorthy
G.
,
Ravichandran
P.
,
Girijan
G.
,
Sampath
S.
,
Ramaswamy
B.
2015
Phthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluations
.
Environmental Geochemistry and Health
37
,
83
96
.
DOI: 10.1007/s10653-014-9632-5
.
Spongberg
A.
,
Witter
J.
,
Acuña
J.
,
Vargas
J.
,
Murillo
M.
,
Umaña
G.
,
Gómez
E.
,
Perez
G.
2011
Reconnaissance of selected PPCP compounds in Costa Rican surface waters
.
Water Research
45
,
6709
6717
.
DOI: 10.1016/j.watres.2011.10.004
.
Staniszewska
M.
,
Koniecko
I.
,
Falkowska
L.
,
Krzymyk
E.
2015
Occurrence and distribution of bisphenol A and alkylphenols in the water of the gulf of Gdansk (Southern Baltic)
.
Marine Pollution Bulletin
91
,
372
379
.
DOI: 10.1016/j.marpolbul.2014.11.027
.
Székács
A.
,
Mörtl
M.
,
Darvas
B.
2015
Monitoring pesticide residues in surface and ground water in Hungary: surveys in 1990–2015
.
Journal of Chemistry
2015
,
717948
.
DOI: 10.1155/2015/717948
.
Szekeres
E.
,
Baricz
A.
,
Chiriac
C.
,
Farkas
A.
,
Opris
O.
,
Soran
M.-L.
,
Andrei
A.-S.
,
Kudi
K.
,
Balcázar
J.
,
Dragos
N.
,
Coman
C.
2017
Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals
.
Environmental Pollution
225
,
304
315
.
DOI: 10.1016/j.envpol.2017.01.054
.
Torres
N.
,
Aguiar
M.
,
Ferreira
L.
,
Américo
J.
,
Machado
Â.
,
Cavalcanti
E.
,
Tornisielo
V.
2015
Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna
.
Environmental Monitoring and Assessment
187
,
379
.
DOI: 10.1007/s10661-015-4626-z
.
Tranchida
P.
,
Purcaro
G.
,
Dugo
P.
,
Mondello
L.
2011
Modulators for comprehensive two-dimensional gas chromatography
.
TrAC Trends in Analytical Chemistry
30
,
1437
1461
.
DOI: 10.1016/j.trac.2011.06.010
.
USEPA (US Environmental Protection Agency)
2007
Method 3535A (SW-846), Solid-Phase Extraction
.
USEPA
,
Washington, DC, USA
.
Velicu
M.
,
Suri
R.
2009
Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed-use areas
.
Environmental Monitoring and Assessment
154
,
349
359
.
DOI: 10.1007/s10661-008-0402-7
.
Wanda
E.
,
Nyoni
H.
,
Mamba
B.
,
Msagati
T.
2017
Occurrence of emerging micropollutants in water systems in Gauteng, Mpumalanga and north west provinces, South Africa
.
Environmental Research and Public Health
14
, 79.
DOI: 10.3390/ijerph14010079
.
Wang
C.
,
Shi
H.
,
Adams
C.
,
Gamagedara
S.
,
Stayton
I.
,
Timmons
T.
,
Ma
Y.
2011
Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry
.
Water Research
45
,
1818
1828
.
DOI: 10.1016/j.watres.2010.11.043
.
Wang
G.
,
Ma
P.
,
Zhang
Q.
,
Lewis
J.
,
Lacey
M.
,
Furukawa
Y.
,
O'Reilly
S.
,
Meaux
S.
,
McLachlan
J.
,
Zhang
S.
2012
Endocrine disrupting chemicals in New Orleans surface waters and Mississippi Sound sediments
.
Journal of Environmental Monitoring
14
(
5
),
1353
1364
.
DOI: 10.1039/c2em30095 h
.
Wang
X.
,
Lou
X.
,
Zhang
N.
,
Ding
G.
,
Chen
Z.
,
Xu
P.
,
Wu
L.
,
Cai
J.
,
Han
J.
,
Qiu
X.
2015
Phthalate esters in main source water and drinking water of Zhejiang Province (China): distribution and health risks
.
Environmental Toxicology and Chemistry
34
,
2205
2212
.
DOI: 10.1002/etc.3065
.
WHO (World Health Organization)
2006
Health Aspects of Plumbing
.
WHO, Geneva
,
Switzerland
.
WHO (World Health Organization)
2016
Protecting Surface Water for Health: Identifying, Assessing and Managing Drinking-Water Quality Risks in Surface-Water Catchments
.
WHO, Geneva
,
Switzerland
.
Wilkinson
J.
,
Hooda
P.
,
Swinden
J.
,
Barker
J.
,
Barton
S.
2017
Spatial distribution of organic contaminants in three rivers of Southern England bound to suspended particulate material and dissolved in water
.
Science of the Total Environment
593–594
,
487
497
.
DOI: 10.1016/j.scitotenv.2017.03.167
.
Wilm
M.
2011
Principles of electrospray ionization
.
Molecular & Cellular Proteomics
10
(
7
),
M111.009407
.
DOI: 10.1074/mcp.R111.009407
.
Wu
Z.
,
Zhang
D.
,
Cai
Y.
,
Wang
X.
,
Zhang
L.
,
Chen
Y.
2017
Water quality assessment based on the water quality index method in Lake Poyang: the largest freshwater lake in China
.
Scientific Reports
7
,
17999
.
DOI: 10.1038/s41598-017-18285-y
.
Yamamoto
H.
,
Tamura
I.
,
Hirata
Y.
,
Kato
J.
,
Kagota
K.
,
Katsuki
S.
,
Yamamoto
A.
,
Kagami
Y.
,
Tatarazako
N.
2011
Aquatic toxicity and ecological risk assessment of seven parabens: individual and additive approach
.
Science of the Total Environment
410–411
,
102
111
.
DOI: 10.1016/j.scitotenv.2011.09.040
.
Yang
Y.
,
Zhao
J.
,
Liu
Y.
,
Liu
W.
,
Zhang
Q.
,
Yao
L.
,
Hu
L.
,
Zhang
J.
,
Jiang
Y.
,
Ying
G.
2018
Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination
.
Science of the Total Environment
616–617
,
816
823
.
DOI: 10.1016/j.scitotenv.2017.10.241
.
Yu
J.
,
Bian
Z.
,
Tian
X.
,
Zhang
J.
,
Zhang
R.
,
Zheng
H.
2018
Atrazine and its metabolites in surface water and well waters in rural area and its human and ecotoxicological risk assessment of Henan province, China
.
Human and Ecological Risk Assessment
24
,
1
13
.
DOI. 10.1080/10807039.2017.1311768
.
Zhang
X.
,
Gao
Y.
,
Li
Q.
,
Li
G.
,
Guo
Q.
,
Yan
C.
2011
Estrogenic compounds and estrogenicity in surface water, sediments, and organisms from Yundang Lagoon in Xiamen, China
.
Archives of Environmental Contamination and Toxicology
61
,
93
100
.
DOI: 10.1007/s00244-010-9588-0
.
Zhang
X.
,
Starner
K.
,
Spurlock
F.
2012
Analysis of chlorpyrifos agricultural use in regions of frequent surface water detections in California, USA
.
Bulletin of Environmental Contamination and Toxicology
89
,
978
984
.
DOI: 10.1007/s00128-012-0791-8
.