The Muskingum method is one of hydrological approaches that has been used for flood routing for many years thanks to its simplicity and reasonable accuracy over other methods. In engineering works, the calculation of the Peak section of a flood hydrograph is crucially important. In the present study, using the particle swarm optimization (PSO) algorithm, instead of using a single basic flood, the parameters of the linear Muskingum method (X, K, Δt) are calculated by computed arithmetic and geometric means relevant to two basic floods in the form of eight different models for calculating the downstream hydrograph. The results indicate that if the numerical values of the calculated flood inflow are placed in the interval of the inflow and the basic flood which the parameters X, K, Δt are from, the computation accuracy in approximating the outflow flood related to the peak section of the inflow hydrograph increases for all the mentioned models. In other words, if the arithmetic mean of X, K and the geometric mean of Δt, relevant to the two basic floods, are used instead of using values of X, K, Δt of a single basic flood, the computational accuracy in estimating the flood peak section of the hydrograph in downstream has the highest increase among all the eight models. Thus, the Mean Relative Error (MRE) relevant to the peak section of the inflow hydrograph of the third flood (observational flood) obtained by the first and second basic floods was equal to 4.89% and 2.91%, respectively, while in case of using the arithmetic mean of X and K and the geometric mean of Δt, related to the first and second basic floods (the best models presented in this study), this value is equal to 1.66%.

  • Using parameters of two baseline floods simultaneously for flood routing using the linear Muskingum method.

  • In addition to the optimized (X, K), the time interval (Δt) is also optimized using the particle swarm optimization (PSO) algorithm.

  • Using the arithmetic mean of X, K and the geometric mean of Δt related to two baseline floods is the best state for flood routing.

  • Increasing the accuracy of flood routing calculations in estimating the flood peak section using parameters of two baseline floods rather than using parameters of a single baseline flood.

  • Using the presented model in this study compared to the case in which only the first or second baseline flood is used, the Mean Relative Error (MRE) will be decreased by 66% and 43%, respectively.

Floods are one of the natural disasters, and preventing economic, social, socio-economic and other damage from floods has been a concern for humans (Vafaei & Harati 2010; Farzin et al. 2018; Fotovatikhah et al. 2018; Vatankhah 2018). The flood analysis and control in watersheds threatened by flooding are important for human lives (Rowshan et al. 2007). The flood routing is, in fact, the calculation of the flood hydrograph in the downstream. The flood routing is treated as an important issue in analyzing the effects of structures on flood control (Asiaban et al. 2015). In particular, the peak flood calculation is of great importance for the construction of flood control structures and reducing natural hazards and economic and social costs (Wu & Chau 2011; Gholami et al. 2015; Reggiani et al. 2016). Various hydraulic and hydrological methods are used for flood routing. In other words, the estimation of the flood hydrograph is called ‘flood routing’. (Yadav et al. 2015; Formetta et al. 2018). Due to longer computations and the need for more data, using hydraulic methods is difficult (Yadav et al. 2015), while flood routing using hydrological approaches requires much less data and is easier (Yadav et al. 2015). (Tsai 2005) examined hydraulic and hydrologic methods of flood routing and concluded that the former are more accurate than the latter but suffer from complexity in solving relevant equations. The Muskingum flood routing is one of the most important hydrological methods. This model uses continuity equations and relationships between discharge, outflow and flooding values (Meng et al. 2017). Niazkar & Afzali (2016) presented a new model for the nonlinear Muskingum method and used the hybrid MHBMO-GRG algorithm, which is a combination of the modified honey bee mating optimization (MHBMO) and the generalized reduced gradient (GRG), to optimize the parameters of the mentioned method. Mohan (1997) developed a model based on the genetic algorithm (GA) to estimate the parameters of the nonlinear Muskingum. Furthermore, Barati (2011) investigated the parameters of the nonlinear Muskingum model using Nelder–Mead Simplex (NMS) and compared the performance of this algorithm with other techniques for evaluating the Muskingum parameters. (Zhang et al. 2017) presented a new model for the nonlinear Muskingum method entitled ‘VEP-NLMM-L’ and used the improved real coded adaptive genetic algorithm (RAGA) to estimate the parameters of the model. (Choudhury et al. 2002) developed a method to investigate flood routing in river networks. In this method, multiple inflows are substituted by an equivalent single inflow by means of finite-difference, correlation equation and momentum methods. To solve the equation, the Levenberg-Marquardt algorithm in SPSS software is used. The comparison between this and methods previously proposed by Gill and Wilson confirms the high accuracy of this method. Barati (2013) applied GRG and Evolutionary Solver methods in Microsoft Excel 2010 to optimize the Muskingum parameters. Hirpurkar & Ghare (2014) analyzed three different nonlinear forms of the parameter (m) in the nonlinear Muskingum method using Microsoft Excel. Their results confirms higher accuracy of the nonlinear Muskingum when using the form presented by Chow (1959) a S = K[XI + (1 − X)O]m. The particle swarm optimization (PSO) algorithm is a population-based evolutionary algorithm and is applicable to civil engineering and water resource optimization issues. These include reservoir operations (Nagesh Kumar & Janga Reddy 2007), water quality management (Lu et al. 2002; Chau 2005; Afshar et al. 2011), water resources management in the basin (Shourian et al. 2008), flood control management (Meraji 2004). Chu & Chang (2009) optimized the parameters in the nonlinear Muskingum method using the PSO algorithm. The comparison between this method and previous ones including harmony search (HS), linear regression (LR) and GA indicates the high accuracy and speed of the PSO algorithm in estimating the parameters of the nonlinear Muskingum. (Moghaddam et al. 2016) proposed a new four-parameter model for the nonlinear Muskingum method that was used for four flood routings. The results indicated that the PSO algorithm optimized the four parameters of the presented model with high accuracy and fast convergence rate. Also, to enhance the linearization process and increase the accuracy of the linear Muskingum method, Bazargan & Norouzi (2018) divided the inflow hydrograph into the start, peak and end sections and optimized the parameters(X, K, Δt) of each section using the PSO algorithm. Owing to low computational time, algorithms are very capable of optimizing the parameters of the Muskingum method. Increasing the number of the parameters of the Muskingum method, causes the increase of the algorithm calculation time, while the accuracy of results does not change significantly (Farahani et al. 2018).

In the present study, as the inflow discharge variation related to the third flood (computational flood) is in the limit of inflow discharge variation related to the first and second floods (basic floods), rather than using values of X, K, Δt related to a single basic flood, the arithmetic and geometric means of respective parameters of the basic floods are used in eight different models to improve the accuracy of the linear Muskingum method in estimating the flood peak section of the outflow hydrograph. It should be noted that the values of X, K, Δt in each basic flood are estimated through the PSO.

Study area

In this study, the recorded data for the Mollasani hydrometric station (station no. 21–308, 48°53′ E, 31°35′N) at the upstream and the Ahwaz hydrometric station (station no. 21–309, 48°40′E, 31°20′N) (Distance 60.5 Km) at the downstream of the study reach are used, both related to the Karun River in Iran (Figure 1). The flood data (Table 1) with the variation of the inflow from 221(m3/s) to 565(m3/s) are utilized as the first basic flood and the flood data (Table 1) with the variation of the inflow from 316(m3/s) to 490(m3/s) are employed as the second basic flood for computing the parameters of linear Muskingum method (X, K, Δt). The main advantage of the Muskingum method is that it can be used to route any other floods that have occurred during the study period (to obtain the characteristics of the flood at downstream)., provided that the morphology of the river has not changed, using the basic flood parameters (floods whose inflow and outflow values have been recorded). For this reason, in the present study, the parameters obtained from the basic floods (first and second floods) have been used to calculate the outflow hydrograph of the third flood (Table 1) with the range of changes in the inflow from 222 m3/s to 494 m3/s. It is worth mentioning that all three floods are related to the mentioned range (Mollasani hydrometric station at upstream and Ahwaz station at downstream) of the Karun River.

Table 1

Values of inflow and outflow flooding

First flood
Second flood
Third flood
Time(h)Inflow (m3/s)Observed outflow (m3/s)Inflow (m3/s)Observed outflow (m3/s)Inflow (m3/s)Observed outflow (m3/s)
221 198 366 290 287 243 
224 198 376 296 287 244 
231 198 387 299 292 250 
235 198 396 303 292 250 
242 198 407 310 294 257 
246 200 416 314 296 257 
255 200 427 317 298 257 
263 203 436 325 300 260 
272 203 446 328 305 263 
283 206 453 336 307 263 
10 296 209 459 339 311 266 
11 309 214 469 347 316 270 
12 320 217 473 354 320 273 
13 331 223 478 362 325 276 
14 342 229 483 366 329 276 
15 351 235 485 373 334 280 
16 362 238 490 381 340 283 
17 374 247 490 389 349 286 
18 385 254 488 397 356 286 
19 396 263 488 401 367 290 
20 410 270 485 405 380 293 
21 423 280 481 413 392 293 
22 437 293 478 417 407 297 
23 450 300 473 426 421 304 
24 464 311 469 426 434 307 
25 478 322 459 426 450 311 
26 491 333 455 426 462 318 
27 503 344 448 430 471 329 
28 512 359 441 434 478 336 
29 521 371 436 434 482 344 
30 530 383 430 434 487 356 
31 537 400 423 434 489 363 
32 542 412 416 434 491 375 
33 549 425 409 434 494 387 
34 553 438 401 434 494 396 
35 558 451 394 430 491 404 
36 560 460 387 430 491 412 
37 563 474 381 426 489 421 
38 563 483 374 421 489 429 
39 565 493 366 421 487 438 
40 565 497 361 413 485 438 
41 563 507 353 409 482 447 
42 563 517 349 401 478 443 
43 560 521 343 397 475 447 
44 558 526 336 393 473 451 
45 556 531 330 389 469 451 
46 553 531 326 381 464 451 
47 551 536 320 377 459 451 
48 549 536 316 373 455 451 
49 542 541   450 451 
50 540 541   446 451 
51 535 541   441 451 
52 530 546   434 451 
53 526 546   430 451 
54 521 546   423 451 
55 514 546   419 447 
56 510 546   412 447 
57 503 551   405 443 
58 498 546   398 443 
59 494 546   392 438 
60 487 541   383 434 
61 482 541   376 429 
62 475 541   369 429 
63 471 531   367 421 
64 464 531   356 417 
65 457 526   349 412 
66 453 521   342 408 
67 446 517   338 400 
68 439 507   331 396 
69 432 502   327 391 
70 428 497   320 387 
71 421 493   316 375 
72 414 488   311 371 
73 410 483   307 367 
74 405 479   303 363 
75 401 474   298 356 
76 394 465   292 352 
77 389 460   289 344 
78 385 456   285 340 
79 383 451   279 333 
80 378 443   274 329 
81 371 438   270 325 
82 367 434   265 322 
83 365 429   263 318 
84 360 421   259 314 
85 356 417   255 311 
86 351 412   250 304 
87 349 404   246 300 
88 347 400   242 293 
89 342 396   239 290 
90 342 391   235 286 
91 338 387   233 283 
92 336 383   231 280 
93 334 379   229 276 
94 331 375   226 273 
95 329 375   224 266 
96 327 371   222 263 
97 322 367     
98 322 363     
99 320 359     
100 320 356     
101 318 356     
102 316 352     
103 314 348     
104 311 344     
105 309 340     
106 309 340     
107 307 336     
108 305 333     
109 305 333     
110 303 333     
111 300 329     
112 300 325     
113 298 325     
114 298 322     
115 296 318     
116 294 318     
117 296 318     
118 294 314     
119 294 311     
120 294 311     
First flood
Second flood
Third flood
Time(h)Inflow (m3/s)Observed outflow (m3/s)Inflow (m3/s)Observed outflow (m3/s)Inflow (m3/s)Observed outflow (m3/s)
221 198 366 290 287 243 
224 198 376 296 287 244 
231 198 387 299 292 250 
235 198 396 303 292 250 
242 198 407 310 294 257 
246 200 416 314 296 257 
255 200 427 317 298 257 
263 203 436 325 300 260 
272 203 446 328 305 263 
283 206 453 336 307 263 
10 296 209 459 339 311 266 
11 309 214 469 347 316 270 
12 320 217 473 354 320 273 
13 331 223 478 362 325 276 
14 342 229 483 366 329 276 
15 351 235 485 373 334 280 
16 362 238 490 381 340 283 
17 374 247 490 389 349 286 
18 385 254 488 397 356 286 
19 396 263 488 401 367 290 
20 410 270 485 405 380 293 
21 423 280 481 413 392 293 
22 437 293 478 417 407 297 
23 450 300 473 426 421 304 
24 464 311 469 426 434 307 
25 478 322 459 426 450 311 
26 491 333 455 426 462 318 
27 503 344 448 430 471 329 
28 512 359 441 434 478 336 
29 521 371 436 434 482 344 
30 530 383 430 434 487 356 
31 537 400 423 434 489 363 
32 542 412 416 434 491 375 
33 549 425 409 434 494 387 
34 553 438 401 434 494 396 
35 558 451 394 430 491 404 
36 560 460 387 430 491 412 
37 563 474 381 426 489 421 
38 563 483 374 421 489 429 
39 565 493 366 421 487 438 
40 565 497 361 413 485 438 
41 563 507 353 409 482 447 
42 563 517 349 401 478 443 
43 560 521 343 397 475 447 
44 558 526 336 393 473 451 
45 556 531 330 389 469 451 
46 553 531 326 381 464 451 
47 551 536 320 377 459 451 
48 549 536 316 373 455 451 
49 542 541   450 451 
50 540 541   446 451 
51 535 541   441 451 
52 530 546   434 451 
53 526 546   430 451 
54 521 546   423 451 
55 514 546   419 447 
56 510 546   412 447 
57 503 551   405 443 
58 498 546   398 443 
59 494 546   392 438 
60 487 541   383 434 
61 482 541   376 429 
62 475 541   369 429 
63 471 531   367 421 
64 464 531   356 417 
65 457 526   349 412 
66 453 521   342 408 
67 446 517   338 400 
68 439 507   331 396 
69 432 502   327 391 
70 428 497   320 387 
71 421 493   316 375 
72 414 488   311 371 
73 410 483   307 367 
74 405 479   303 363 
75 401 474   298 356 
76 394 465   292 352 
77 389 460   289 344 
78 385 456   285 340 
79 383 451   279 333 
80 378 443   274 329 
81 371 438   270 325 
82 367 434   265 322 
83 365 429   263 318 
84 360 421   259 314 
85 356 417   255 311 
86 351 412   250 304 
87 349 404   246 300 
88 347 400   242 293 
89 342 396   239 290 
90 342 391   235 286 
91 338 387   233 283 
92 336 383   231 280 
93 334 379   229 276 
94 331 375   226 273 
95 329 375   224 266 
96 327 371   222 263 
97 322 367     
98 322 363     
99 320 359     
100 320 356     
101 318 356     
102 316 352     
103 314 348     
104 311 344     
105 309 340     
106 309 340     
107 307 336     
108 305 333     
109 305 333     
110 303 333     
111 300 329     
112 300 325     
113 298 325     
114 298 322     
115 296 318     
116 294 318     
117 296 318     
118 294 314     
119 294 311     
120 294 311     

Introducing linear Muskingum method

The Muskingum model hydrologic flood-routing method was introduced by McCarthy (1938) in studies of floods of the Muskingum River in Ohio in the United States.

Application of the Muskingum model involves a calibration phase and a prediction phase (Das 2004). The calibration parameters of the Muskingum model are normally obtained from observed input and output hydrographs in a river reach or reservoir. The output hydrograph is calculated with the Muskingum routing formulae in the prediction phase. The Muskingum model basic equations are the continuity and storage equations, which are given by Equations (1) and (2), respectively:
(1)
(2)
where S = storage; I = inflow; O = outflow; t = time; ΔS = Δt = rate of change of storage during a time interval Δt; K = storage: time constant for the river reach; and X = dimensionless weighting factor representing the inflow outflow effects on storage. X ranges between 0 and 0.5 for reservoir storage and 0 and 0.3 for stream channels (Mohan 1997).
Equation (2) known as the Muskingum Equation, is the basis of this method in which K and X are two coefficients such that considering the data set, make the mentioned relation linear as far as possible. X is known as weighting factor and takes a value between 0 and 0.5 and K is known as storage – time constant. Regarding continuity of flow, the above equation becomes (Chow 1959):
(3)
Removing S2 − S1 from the above equations, the following relation is derived:
(4)
where C1, C2, C3 are calculated as follows:
(5)
(6)
(7)
(8)

If I1, I2, O1 are initially known, O2 can be calculated using Equation (4) provided that K and X are determined. Then for a new time step, next discharge in the inflow hydrograph is considered as I2; and I2 and O2 as new I1 and O1.

Determination of outflow hydrograph

To optimize values of the linear Muskingum method parameters (X, K,Δt), the minimization of the sum of absolute value deviations (SAD) is used as the cost function in the PSO algorithm in the form of Equation (9):
(9)
where Qi, Oi are observational outflow discharge and routed outflow discharge (computational), respectively.
To calculate the arithmetic mean of each parameter in the linear Muskingum method, Equation (10) and to calculate the geometric mean of the same parameters, Equation (11) is used.
(10)
(11)

To calculate the arithmetic and geometric means of K and Δt, the same equations are used presented for X.

The flowchart used in this study for optimizing the parameters of the Muskingum method using the PSO algorithm and the cost function SAD is illustrated in Figure 2.

Figure 1

Study area.

Figure 2

Particle swarm optimization (PSO) flowchart.

Figure 2

Particle swarm optimization (PSO) flowchart.

Close modal

Some previous researchers considered the parameter Δt equal to the time interval of reading inflow and outflow hydrographs. However, the optimization results for the first and second floods (basic floods) are not the same. In other words, the optimization of the parameter Δt leads to increasing the accuracy of the linear Muskingum method in estimating the outflow hydrograph. Subramanya (1994) has emphasized the selection of the optimal time interval (Δt).

In the present study, the parameters of the linear Muskingum method (X, K, Δt) are calculated using the PSO method. In general, this study is developed as follows:

  • 1.

    Optimization of the linear Muskingum parameters (X, K, Δt) using the first basic flood in which inflow discharge variation is between 221 (m3/s) and 565 (m3/s).

  • 2.

    Optimization of linear Muskingum parameters (X, K, Δt) using the second basic flood in which inflow discharge variation is between 316 (m3/s) and 490 (m3/s).

  • 3.

    Calculation of arithmetic and geometric means of the estimated parameters from steps 1 and 2.

  • 4.

    Calculation of different models for those parameters according to Tables 25.

  • 5.

    Using the values of X, K, Δt, estimated in the above steps to calculate the third flood outflow hydrograph (computational flood) in which inflow discharge variation is between 222 (m3/s) and 494 (m3/s).

Table 2

Optimal values of parameters X, K, Δt related to basic floods and error values obtained for computational flood

Basic floodXK (h)Δt (h)MRE %MRE % (peak section, T = 27 to T = 45(h))
First flood 0.401 14.709 1.102 4.69 4.89 
Second flood 0.078 11.957 0.675 5.37 2.91 
Basic floodXK (h)Δt (h)MRE %MRE % (peak section, T = 27 to T = 45(h))
First flood 0.401 14.709 1.102 4.69 4.89 
Second flood 0.078 11.957 0.675 5.37 2.91 
Table 3

Different values obtained by arithmetic mean of parameter Δt related to basic floods and error values obtained for computational flood

Muskingum parameters modelsXKΔtMRE %MRE % (peak section, T = 27 to T = 45(h))
Δt & X (AMa), K (GMb0.2395 13.2618 0.8885 4.68 2.19 
Δt & K (AM), X (GM) 0.1768 13.333 0.8885 4.64 2.25 
Δt (AM), X & K (GM) 0.1768 13.2618 0.8885 4.64 2.33 
Muskingum parameters modelsXKΔtMRE %MRE % (peak section, T = 27 to T = 45(h))
Δt & X (AMa), K (GMb0.2395 13.2618 0.8885 4.68 2.19 
Δt & K (AM), X (GM) 0.1768 13.333 0.8885 4.64 2.25 
Δt (AM), X & K (GM) 0.1768 13.2618 0.8885 4.64 2.33 

aArithmetic mean.

bGeometric mean.

Table 4

Error values obtained for computational flood in the case of using geometric and arithmetic means of three parameters X, K, Δt

Muskingum parameters modelsXKΔtMRE %MRE % (peak section, T = 27 to T = 45(h))
X, K, Δt (Geometric mean) 0.1768 13.2618 0.8624 4.67 
X, K, Δt (Arithmetic mean) 0.2395 13.333 0.8885 4.68 2.11 
Muskingum parameters modelsXKΔtMRE %MRE % (peak section, T = 27 to T = 45(h))
X, K, Δt (Geometric mean) 0.1768 13.2618 0.8624 4.67 
X, K, Δt (Arithmetic mean) 0.2395 13.333 0.8885 4.68 2.11 
Table 5

Different models using geometric mean of the parameter Δt related to basic floods and error values obtained for computational flood

Muskingum parameters modelsXKΔtMRE %MRE % (peak section, T = 27 to T = 45(h))
X & K (AM), Δt (GM) 0.2395 13.333 0.8624 4.71 1.66 
X (AMa), K & Δt (GMb0.2395 13.2618 0.8624 4.70 1.73 
K (AM), X & Δt (GM) 0.1768 13.333 0.8624 4.68 1.95 
Muskingum parameters modelsXKΔtMRE %MRE % (peak section, T = 27 to T = 45(h))
X & K (AM), Δt (GM) 0.2395 13.333 0.8624 4.71 1.66 
X (AMa), K & Δt (GMb0.2395 13.2618 0.8624 4.70 1.73 
K (AM), X & Δt (GM) 0.1768 13.333 0.8624 4.68 1.95 

aArithmetic mean.

bGeometric mean.

The investigations show that values of X, K, Δt in any river reach depend upon numerical values of inflow and outflow hydrographs or upon the extent of the flooding section in different cross-sections of the river during the given reach. In other words, by increasing the peak values of inflow hydrograph and extending the flooding section in the river, the values of X, K, Δt will change. Therefore, if values of inflow discharge of the computational flood are closer to values of inflow discharge of the observational flood, the accuracy of the linear Muskingum method in estimating outflow discharge will increase, and if values of inflow discharge of the computational flood (the third flood) are placed in the limit of two observational basic floods, it would be expected that the passing flow behavior of the computational flood is placed in the limit of the behavior of the first and second basic floods. Therefore, in the case of using different models for estimating X, K, and Δt from two basic floods (Tables 25), it is more likely that the accuracy of the linear Muskingum will increase.

As can be seen in Table 1, variations of the third flood's inflow discharge (computational flood) are approximately in the limit of variations in inflow discharge of the first and second floods. For this reason, rather than using parameters of a single basic flood to calculate the outflow hydrograph of the third flood, the developed models in Tables 25 are used for calculating the mentioned parameters.

The parameters of the linear Muskingum method (X, K, Δt) for each of the first and second floods (basic floods) which have been optimized by the PSO algorithm are given in Table 2. Also, if the parameters of each of the base floods are used alone to calculate the hydrograph of the third flood (computational flood), the values for the Mean Relative Error (MRE) of the total flood and the MRE of the peak flood section are presented in Table 2.

If the arithmetic mean of the parameter Δt for the two baseline floods is used in three possible models, the values for the parameters X, K, and Δt of each model and the error values obtained for the third flood routing (computational flood) are given in Table 3.

If the geometric and arithmetic means of all three parameters X, K, and Δt are used to calculate the computational flood outflow hydrograph, the values related to the mentioned parameters as well as the error values obtained for calculating the computational flood are presented in Table 4.

The error values obtained for the routing of the third flood (computational), as well as the values for the parameters X, K, and Δt, are given in Table 5 in the case where the geometric mean of the Δt parameter is used in three possible models.

As can be seen in Tables 25, the models presented in this study, in all cases, have increased the accuracy of the linear Muskingum method in estimating the outflow associated with the third flood (computational flood) peak section of the inflow hydrograph. According to Table 5, when using the three models presented in the geometric mean of the parameter Δt to calculate the third flood (computational flood) outflow hydrograph, the highest accuracy is obtained for the linear Muskingum method in estimating the outflow hydrograph of the peak flood section.

As it is presented in Tables 25, the MRE of the total outflow hydrograph has not been significantly reduced in the case of using different models for values of X, K and Δt, compared to the case where only the first and second basic flood data are used. However, the values related to the MRE of the peak flood section using the models presented in the present study are reduced in all cases. In other words, the results of the present study indicate that, if the range of the inflow variations of the computational flood (third flood) is within the range of the variations of the inflow of the basic floods (first and second floods), in terms of using the geometric mean parameter Δt and the arithmetic mean of the parameters X, K, the linear Muskingum method is more accurate in estimating the hydrograph of the flood peak section (whether using a single base flood alone or when using other models presented in the present study). So the MRE related to the peak flood hydrograph section of the third flood in the case of using the mentioned model is obtained to be 1.66%. While this value is obtained equal to 4.89% and 2.91%, respectively, when only the first and second basic flood parameters are used. Since the flood hydrograph peak section is more important in engineering, the use of this model in estimating the outflow hydrograph is more efficient.

Observed inflow and outflow hydrographs related to the third flood as well as computational values of the outflow hydrograph in the case of using the parameters of the first and second basic floods alone, and also the best model presented in the present study (using the geometric mean of the parameter Δt and the arithmetic mean of the parameters X, K), are shown in Figure 3.

Figure 3

Observational and computational discharge using basic floods.

Figure 3

Observational and computational discharge using basic floods.

Close modal

In the present study, the amplitude of the variations of the third flood inflow, which was used as a computational flood, is within the range of the inflow of the first and second floods (basic floods), so that its minimum value was close to the inflow of the first basic flood and its maximum value was close to the inflow of the second basic flood. Instead of using the parameters obtained from one basic flood, the use of the arithmetic and geometric means related to the two basic floods in different modes presented in Tables 35 was examined. For this reason, the use of the parameters obtained in the above cases, instead of using the usual linear Muskingum method (using the parameters of one basic flood) in all cases, increased the accuracy of the linear Muskingum method in estimating the peak section of the computational flood inflow hydrograph.

The results suggested that MRE for the peak section of the hydrograph in the case of using the first and second basic flood was 4.89 and 2.91 percent, respectively. While this value was reduced to 1.66 percent in the case of using the arithmetic mean for X, K and the geometric mean for the parameter Δt using the first and second basic floods. In other words, in the case of using the presented model compared to the case where only the first or second basic floods are used, the computational error decreased 66% and 43%, respectively.

The authors gratefully acknowledge the research department of Iran Water Resources Management Co. for its support in collecting and providing data required in this project.

The Supplementary Material for this paper is available online at https://dx.doi.org/10.2166/ws.2020.099.

Asiaban
P.
Amiri Tokaldany
E.
Tahmasebi Nasab
M.
2015
Simulation of water surface profile in vertically stratified rockfill dams
.
International Journal of Environmental Research
9
(
4
),
1193
1200
.
Chau
K.
2005
A split-step PSO algorithm in prediction of water quality pollution
. In:
International Symposium on Neural Networks
(J. Wang, X. Liao & Z. Yi, eds.).
Springer
,
Berlin
,
Heidelberg
, pp.
1034
1039
.
Choudhury
P.
Shrivastava
R. K.
Narulkar
S. M.
2002
Flood routing in river networks using equivalent Muskingum inflow
.
Journal of Hydrologic Engineering
7
(
6
),
413
419
.
Chow
V. T.
1959
Open Channel Hydraulics
.
McGraw-Hill Book Company
,
New York, NY
.
Chu
H. J.
Chang
L. C.
2009
Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model
.
Journal of Hydrologic Engineering
14
(
9
),
1024
1027
.
Das
A.
2004
Parameter estimation for Muskingum models
.
Journal of Irrigation and Drainage Engineering
130
(
2
),
140
147
.
Farahani
N. N.
Farzin
S.
Karami
H.
2018
Flood routing by Kidney algorithm and Muskingum model
.
Natural Hazards
2018
,
1
19
.
Farzin
S.
Singh
V.
Karami
H.
Farahani
N.
Ehteram
M.
Kisi
O.
El-Shafie
A.
2018
Flood routing in river reaches using a three-parameter Muskingum model coupled with an improved bat algorithm
.
Water
10
(
9
),
1130
.
Formetta
G.
Prosdocimi
I.
Stewart
E.
Bell
V.
2018
Estimating the index flood with continuous hydrological models: an application in Great Britain
.
Hydrology Research
49
(
1
),
123
133
.
Fotovatikhah
F.
Herrera
M.
Shamshirband
S.
Chau
K. W.
Faizollahzadeh Ardabili
S.
Piran
M. J.
2018
Survey of computational intelligence as basis to big flood management: challenges, research directions and future work
.
Engineering Applications of Computational Fluid Mechanics
12
(
1
),
411
437
.
Gholami
V.
Chau
K. W.
Fadaee
F.
Torkaman
J.
Ghaffari
A.
2015
Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers
.
Journal of Hydrology
529
,
1060
1069
.
Hirpurkar
P.
Ghare
A. D.
2014
Parameter estimation for the nonlinear forms of the Muskingum model
.
Journal of Hydrologic Engineering
20
(
8
),
04014085
.
Lu
W. Z.
Fan
H. Y.
Leung
A. Y. T.
Wong
J. C. K.
2002
Analysis of pollutant levels in central Hong Kong applying neural network method with particle swarm optimization
.
Environmental Monitoring and Assessment
79
(
3
),
217
230
.
McCarthy
G. T.
1938
The unit hydrograph and flood routing. New London Conference North Atlantic Division. US Army Corps of Engineers, New London, CT, USA
.
Meraji
S. H.
2004
Optimum Design of Flood Control Systems by Particle Swarm Optimization Algorithm
.
Doctoral dissertation, M.Sc. thesis
,
Iran University of Science and Technology
.
Moghaddam
A.
Behmanesh
J.
Farsijani
A.
2016
Parameters estimation for the new four-parameter nonlinear Muskingum model using the particle swarm optimization
.
Water Resources Management
30
(
7
),
2143
2160
.
Mohan
S.
1997
Parameter estimation of nonlinear Muskingum models using genetic algorithm
.
Journal of Hydraulic Engineering
123
(
2
),
137
142
.
Nagesh Kumar
D.
Janga Reddy
M.
2007
Multipurpose reservoir operation using particle swarm optimization
.
J Water Resour Plan Manag
133
,
192
201
.
Niazkar
M.
Afzali
S. H.
2016
Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method
.
Hydrology Research
48
(
5
),
1253
1267
.
doi:10.2166/nh.2016.089
.
Reggiani
P.
Todini
E.
Meißner
D.
2016
On mass and momentum conservation in the variable-parameter Muskingum method
.
Journal of Hydrology
543
,
562
576
.
Rowshan
G. R.
Mohammadi
H.
Nasrabadi
T.
Hoveidi
H.
Baghvand
A.
2007
The role of climate study in analyzing flood forming potential of water basins
.
International Journal of Environmental Research
1
(
3
),
231
236
.
Shourian
M.
Mousavi
S. J.
Tahershamsi
A.
2008
Basin-wide water resources planning by integrating PSO algorithm and MODSIM
.
Water Resources Management
22
(
10
),
1347
1366
.
Subramanya
K.
1994
Engineering Hydrology
, 2nd ed.
McGraw-Hill Education
,
New York, NY
.
Vafaei
F.
Harati
A. N.
2010
Strategic management in decision support system for coastal flood management
.
International Journal of Environmental Research
4
(
1
),
169
176
.
doi: 10.22059/ijer.2010.167
.
Yadav
B.
Perumal
M.
Bardossy
A.
2015
Variable parameter McCarthy–Muskingum routing method considering lateral flow
.
Journal of Hydrology
523
,
489
499
.
Zhang
S.
Kang
L.
Zhou
L.
Guo
X.
2017
A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm
.
Hydrology Research
48
(
1
),
17
27
.
doi:10.2166/nh.2016.185
.

Supplementary data