This paper provides the first survey and assessment of the composition of bottled waters (BW) of Maghreb Arab countries. Parameters reported on labels of 74 (BW) brands were used as datasets. According to the Maghreb, EEC and WHO legislations and using PCA, HCA, KMC and ANOVA analysis in conjunction with analytical and empirical approaches, the study discussed the water quality and classification. The results showed that (BW) constituents comply with natural mineral (MW), spring (SW) and table waters (TW) standards for human consumption. It appears that Ca-HCO3 is the dominant facies in Algerian and Tunisian MW but in Morocco, they are Ca-HCO3 and Na-HCO3 facies. All Algerian and majority of Moroccan and Tunisian SW are Ca-HCO3 type, while both Tunisian and Moroccan TW are mainly Na-Cl type. Some of Maghreb BW are sulfated, chlorinated, bicarbonated, containing calcium, sodium and fluoride and adapted to a low sodium diet. Classification showed that BW could be categorized into four different groups. The first includes five brands of MW, rich in salts with Na + K-Cl facies. Meanwhile, two facies mark the waters of the second (Ca + Mg-SO4 and Ca + Mg-Cl), whereas the waters of the third and fourth are essentially low in salts and marked by Ca + Mg-HCO3 facies.

  • Maghreb bottled waters are characteristic

  • Mineral waters have the highest salt content, followed by spring waters and then table waters.

  • Algerian and Tunisian mineral and spring waters and Moroccan spring waters are calcium bicarbonate facies.

  • Moroccan mineral waters are characterized by two facies; bicarbonate calcium and bicarbonate sodium.

  • Majority of Tunisian and Moroccan table waters are chlorinated sodic facies.

Graphical Abstract

Graphical Abstract

The consumption of bottled natural mineral, spring and table waters has increased considerably in recent years in many regions in the world and, particularly, in the Maghreb countries (North Africa) namely Algeria, Tunisia, Morocco, Libya and Mauritania (Miguel 2006; Lourenço et al. 2010; Felipe-Sotelo et al. 2015; Horowitz et al. 2018; Aslani et al. 2021). This prodigious consumption evolution is attributed to several factors, in particular, customer concern about increased water contamination, bad taste and odors, and bottled water was more closely controlled, safer and sometimes even therapeutic, social norms, affect, image on water consumption and public health campaign (Saleh et al. 2001; Lourenço et al. 2010; Huang & Liu. 2017; Etale et al. 2018; Totaro et al. 2018; Geerts et al. 2020). Doria (2006) summarized factors leading consumers' preferences in drinking bottled waters in USA, Canada and France (Table 1).

Table 1

Reasons for drinking bottled water in USA, Canada and France

FactorUSA (1993) (%)Canada (1999) (%)France (1989) (%)France (1995) (%)France (2000) (%)
Organoleptics 71 54 43 47 
Health and risk 47a 25 13 19 23 
Prefers mineral or spring water – – 28 19 16 
Substitute for other beverages 47a – – – – 
Hardness – – – 14 23 
Other reasons (unspecified) 11 
Don't know – – – – 
FactorUSA (1993) (%)Canada (1999) (%)France (1989) (%)France (1995) (%)France (2000) (%)
Organoleptics 71 54 43 47 
Health and risk 47a 25 13 19 23 
Prefers mineral or spring water – – 28 19 16 
Substitute for other beverages 47a – – – – 
Hardness – – – 14 23 
Other reasons (unspecified) 11 
Don't know – – – – 

a12% of respondents responded that they were both worried about tap water safety and that they used water as a substitute for other beverages. ‘Health and risk’ include safety concerns and fears of toxic products.

Source: Doria (2006).

Mineral water comes from a source tapped at one or more bore holes or springs, and originates from a geologically and physically protected underground water source. It can be differentiated by its particular content of mineral salts, trace elements or other constituents from other forms of water intended for human use. These mineral waters may have therapeutic properties favorable to human health (Lourenço et al. 2010; Jora 2015; USFDA 2022).

Spring water, as their name suggests, comes often from a specific underground source which gets to the land surface to emerge and is safeguarded from any possible pollution (Jora 2015). Spring water is bottled and delivered as it is at the source. Unlike mineral water, their mineral salt composition is not fixed. The only treatments they can undergo are basic physical treatments: decantation, filtration and aeration, if they naturally contain dissolved carbon dioxide (Lourenço et al. 2010; Jora 2015; USFDA 2022).

The table water is usually considered as tap, well or lake waters, bottled, after treatment, and sometimes adding minerals. Their composition is often variable, frequently gasified and finally dechlorinated (Jora 2015; USFDA 2022).

Several studies have been performed to evaluate the composition and quality of bottled waters (Cüneyt 2007; Grošelj et al. 2010; Liidia & Valter 2010; Eggenkamp & Marques 2013; Totaro et al. 2018; Aslani et al. 2021), contrary to the Maghreb countries where we can only cite a few articles dealing with bottled waters in Algeria (Hazzab 2011a, 2011b; Sekiou & Kellil 2014; Labadi & Hammache 2016; Kerdoun et al. 2021), in Tunisia (Gharbi et al. 2010; Sghaier & Ben abdallah 2018) and in Morocco (Gharibi et al. 2018).

In Algeria, Hazzab (2011a, 2011b) discussed, in particular, the evolution in legislation regarding the exploitation, production and marketing of bottled water and Sekiou & Kellil (2014) exposed the classification of spring bottled water. In the latter, the results showed that spring bottled waters can be divided into two distinct major groups. Labadi & Hammache (2016) presented a comparison between mineral and spring waters produced in Algeria, whereas Kerdoun et al. (2021) analysed fluoride in bottled waters in southern Algeria which indicated a maximum value found is 1.65 mg/l.

In Tunisia, Gharbi et al. (2010) investigated the isotopes 234and238U in 10 bottled waters and showed that the levels of these elements vary between 0.16 and 2.02 mSv/a, and do not exceed the maximum dose recommended by the WHO.

In the same context, Sghaier & Ben abdallah (2018) studied the statistical classification of 20 Tunisian bottled waters and concluded that the 20 brands can be grouped in 10 distinct classes with similar chemical characteristics.

While in Morroco, Gharibi et al. (2018), through the water quality index, showed that among the 17 bottled waters studied (mineral water, spring water and table water), only carbonated mineral waters were considered unacceptable for human consumption.

In any case, to our knowledge, there is no global work that encompasses all bottled waters in all the Maghreb countries.

Many constituents are very important and their presence in bottled water could have a serious negative impact on the population health, only particular parameters that define the characteristics of the water are requested by the Maghreb countries legislations (NM 1991; Jora 2011, 2014; NT 2013). Maghreb countries' regulations state that physicochemical parameters like, dry residue, anions, cations and some trace elements must be surveyed at the source. In addition, the mineral water must be free of parasites and pathogenic microorganisms and must contain no fecal contaminants (Jora 2006, 2015; NT 2007a).

Using different empirical, graphical and multivariate techniques, the study discusses the water quality and classification according to the Maghreb, the European (EU), and the World Health Organization (WHO) legislations.

In the literature (McQueen 1967; Rajesh et al. 2002; Marc-Henri 2004; Cüneyt 2007; Gaetano et al. 2007; Lourenço et al. 2010; Tanaskovic et al. 2012; Eggenkamp & Marques 2013; Alfaifi 2019; Taşan et al. 2022), several methods for characterizing and classifying groundwater, in particular packaged waters, have been provided.

The advantage of these techniques, such as principal component analysis (PCA), Factor analysis (FA), Cluster (CA), is their ability to analyze large and complicated data. Such methods, sometimes, create new variables in the comparison and interpretation of data (Gaetano et al. 2007).

The use of different multivariate statistical techniques, the hierarchical cluster analysis (HCA), K-Means clustering (KMC), principal component analysis (PCA), along with graphical piper and empirical Stuyfzand classifications, facilitates the interpretation of complex data to better understand the bottled waters quality and their classification. This combination facilitates the determination of the hydrochemical processes affecting groundwater chemistry (Alfaifi 2019).

The starting assumption is that the bottled waters are indistinguishable from each other in terms of their characteristic constituents as used by most consumers throughout the Maghreb region. So the present study aims to report the first quality assessment of bottled waters produced and sold in these countries, comparison of characteristic constituents with Maghreb, EEC and WHO legislations, and finally, water classification using empirical, graphical and multivariate statistical techniques. For the purpose of the study, the constituents' data sets of bottled waters are reported by means of their labeled physico-chemical compositions.

Monitoring area and data description

The Maghreb region describes a portion of North Africa that covers roughly 6,045,741 km2 and is home to more than 100 million people. Currently, five nations constitute the Maghreb countries (Algeria, Morocco, Tunisia, Mauritania and Libya) (Figure 1). Most of their populations settle along the southern coast of the Mediterranean Sea (Algeria, Libya, Morocco and Tunisia) and the eastern coast of the Atlantic Ocean (Mauritania and Morocco) where water and fertile soils are available. The large surface area and the variety of climatic conditions, hydrological regimes, and geological environments of the Maghreb countries made bottled waters of great variety. The bottled waters (46 natural mineral waters, 30 spring waters and 7 table waters), that have been identified in the Maghreb countries, are listed in Table 2. Several factors, such as the mineralogy, lithology of the aquifer, residence time (Beyene et al. 2019; Grošelj et al. 2010) and amounts of solids (Liidia & Valter 2010) may impact these waters' chemical composition.
Table 2

List of the different bottled waters in the Maghreb countries

Algeria
Tunisia
Morocco
Libya & Mauritania
BrandCategoryBrandCategoryBrandCategoryBrandCategoryBrandCategory
AMW.1 Batna Mineral water AMW.23 Hammemet Mineral water TMW.1 Oktor Mineral water MMW.1 Sidi Ali Mineral water Esafiaa – 
AMW.2 Youkous AMW.24 Ben Haroun   MMW.2 Sidi Harazem Es-Savia – 
AMW.3 Thevest AMW.25 Mansourah TMW.2 Garci MMW.3 Ain Saiss Al Afiaa – 
AMW.4 Touja AMW.26 Bourached TMW.3 Safia A. Mizeb MMW.4 Oulmes EchCaafia – 
AMW.5 Ifri AMW.27 El Goléa TMW.4 Sabrine MSW.1 Ain soltane Spring water   
AMW.6 Sidi driss ASW.1 Alma Spring water TMW.5 Safia Ain Ksiba MSW.2 Ain Atlas   
AMW.7 Sidi Elkebir ASW.2 Nestlé TMW.6 Marwa MSW.3 Ain Ifrane   
AMW.8 Daouia ASW.3 Hayeta TMW.7 Hayet MSW.4 Chaouen   
AMW.9 Lalla Khadij ASW.4 Ayris TMW.8 Jannet MSW.5 Rif   
AMW.10 Djamila ASW.5 Mileza TMW.9 Fourat MSW.6 Cristaline   
AMW.11 Sfid ASW.6 Ifren TMW.10 Cristaline MTW.1 Bahia Table water   
AMW.12 Ain Souda ASW.7 Manbaa El Gh TMW.11 Aqualine MTW.2 Hania   
AMW.13 Guedila ASW.8 Mont Djurjura TSW.1 Main Spring water MTW.3 Ciel   
AMW.14 Texanaa ASW.9 Togia TSW.2 Melina MTW.4 Mazine   
AMW.15 Saida ASW.10 Ovital TSW.3 Dima MTW.5 Aquariusa   
AMW.16 Lejdar ASW.11 Qniaa TSW.4 Palma     
AMW.17 Chifa ASW.12 Dhaya TSW.5 Melliti     
AMW.18 Mouzaia ASW.13 Sidi Rached TSW.6 Ovia     
AMW.19 N'gaous ASW.14 Banianea TSW.7 Rayan     
AMW.20 Milok ASW.15 Amane TTW.1 Jekiss Table water     
AMW.21 Messerghine ASW.16 Besbassa TTW.2 Primaqua     
AMW.22 Salsabil ASW.17 Arwa       
Algeria
Tunisia
Morocco
Libya & Mauritania
BrandCategoryBrandCategoryBrandCategoryBrandCategoryBrandCategory
AMW.1 Batna Mineral water AMW.23 Hammemet Mineral water TMW.1 Oktor Mineral water MMW.1 Sidi Ali Mineral water Esafiaa – 
AMW.2 Youkous AMW.24 Ben Haroun   MMW.2 Sidi Harazem Es-Savia – 
AMW.3 Thevest AMW.25 Mansourah TMW.2 Garci MMW.3 Ain Saiss Al Afiaa – 
AMW.4 Touja AMW.26 Bourached TMW.3 Safia A. Mizeb MMW.4 Oulmes EchCaafia – 
AMW.5 Ifri AMW.27 El Goléa TMW.4 Sabrine MSW.1 Ain soltane Spring water   
AMW.6 Sidi driss ASW.1 Alma Spring water TMW.5 Safia Ain Ksiba MSW.2 Ain Atlas   
AMW.7 Sidi Elkebir ASW.2 Nestlé TMW.6 Marwa MSW.3 Ain Ifrane   
AMW.8 Daouia ASW.3 Hayeta TMW.7 Hayet MSW.4 Chaouen   
AMW.9 Lalla Khadij ASW.4 Ayris TMW.8 Jannet MSW.5 Rif   
AMW.10 Djamila ASW.5 Mileza TMW.9 Fourat MSW.6 Cristaline   
AMW.11 Sfid ASW.6 Ifren TMW.10 Cristaline MTW.1 Bahia Table water   
AMW.12 Ain Souda ASW.7 Manbaa El Gh TMW.11 Aqualine MTW.2 Hania   
AMW.13 Guedila ASW.8 Mont Djurjura TSW.1 Main Spring water MTW.3 Ciel   
AMW.14 Texanaa ASW.9 Togia TSW.2 Melina MTW.4 Mazine   
AMW.15 Saida ASW.10 Ovital TSW.3 Dima MTW.5 Aquariusa   
AMW.16 Lejdar ASW.11 Qniaa TSW.4 Palma     
AMW.17 Chifa ASW.12 Dhaya TSW.5 Melliti     
AMW.18 Mouzaia ASW.13 Sidi Rached TSW.6 Ovia     
AMW.19 N'gaous ASW.14 Banianea TSW.7 Rayan     
AMW.20 Milok ASW.15 Amane TTW.1 Jekiss Table water     
AMW.21 Messerghine ASW.16 Besbassa TTW.2 Primaqua     
AMW.22 Salsabil ASW.17 Arwa       

awater not taken into consideration in the rest of this study.

AMW.1, Algerian mineral water, brand n°1; ASW.1, Algerian spring water, brand n°1; TMW.1, Tunisian mineral water, brand n°1; TSW.1, Tunisian spring water, brand n°1; TTW.1, Tunisian table water, brand n°1; MMW.1, Moroccan mineral water, brand n°1; MSW.1, Moroccan spring water, brand n°1; MTW.1, Moroccan table water, brand n°1.

Figure 1

Location map of the study region.

Figure 1

Location map of the study region.

Close modal
The reliability of the chemical analysis was verified for the accuracy of the ionic balance estimate using the equation error (1):
(1)
where cations and anions are in meq/l.

The ionic charge balance error considered was within 10% (Cüneyt et al. 2002; Yekdeli et al. 2010; Kloppmann et al. 2011). In this case, consequently, 11% of the water brands data were rejected.

In general, electrical conductivity and the quantity of dissolved solids are essential parameters for characterizing the differences between mineral waters (Moreno et al. 2022) but are not included in the commercial label details (Van der 2003), so they are computed for this purpose (Simler 2014).

Graphical and empirical methods of analysis

The chemical studies of mineral, spring and table waters are intended to classify their facies and the sources of their key chemical components; they are carried out using characteristic reports and are regarded as indices of water quality (Olive 1996). As mineralization increases, the Piper plot is especially suited to studying the evolution of water facies, or to compare groups of samples with each other and to indicate the dominant cation and anion types (Piper 1944).

It is composed of two triangles, allowing the representation of the cationic and the anionic facies, and a rhombus that gives the global facies (Rasouli & Pouya. 2012). Concentrated point clouds reflect the fusion of cationic and anionic elements for the various samples (Olive 1996). The Stuyfzand classification, subdivides water into four levels according to the most relevant chemical characteristics (Stuyfzand 1986). The ‘main type’ is evaluated according to the chloride content, the ‘type’ is evaluated with respect to hardness index and the ‘subtype’ classification is determined based on the cations and the dominant anions. Finally, the ‘class’ is evaluated with respect to the sum of Na+, K+ and Mg2+ in meq/l (Stuyfzand 1989).

Multivariate statistical analysis methods

Multivariable statistical techniques can be used to test water quality data and decide if samples can be put into distinct groups that may essentially be in the hydrochemical context.

HCA

Clustering, as an approach of finding subgroups within observations, is used widely in applications like water quality classification where we try and find some structure in the data.

It is a question of grouping individuals iteratively, beginning from the bottom (the two closest individuals) and progressively constructing a tree or a ‘dendrogram’ grouping all individuals at the root into a single class (Boral et al. 2020). Hierarchical classification is used because in a class of the next partition, each class of a given partition is included.

This involves understanding how the distance between an individual and a group or the distance between two groups at each stage should be calculated or grouped. Therefore, the use of this approach needs to make an additional choice: how to decide the distance between two groups and what the aggregation criterion is to hold (Bouroche & Saporta 2006). According to the different aggregation criteria, multiple classifications will be made; the classification outcome is presented in a dendrogram (Sekiou & Kellil 2014). HCA reveals group structure when within group variation is sufficiently less than between-group variation (Worley & Powers 2013).

Non-hierarchical KMC

A clustering algorithm that divides observations into K clusters is K-means. It can be easily used in classification, as we can dictate the number of clusters, where we divide data into clusters that can be equal to or greater than the number of groups.

Based on their simplicity of implementation and fast execution (Davidson 2002; Kaushik & Mathur 2014), KMC is often used to classify water into various hydrochemical groups; this approach varies from the HCA because at the beginning of the study, the number of clusters is preselected. The KMC method will produce exactly different clusters with the greatest possible distinction. Clustering begins with k random clusters, and then transfers objects between clusters to minimize and maximize variability within and between clusters respectively.

Unlike HCA, it is not possible to present outputs of KMC in a dendrogram for a simple visual evaluation of the results; instead, the results are presented in large table that shows members of clusters and their distances from respective cluster centers (Cüneyt et al. 2002).

PCA

PCA's goal is to return to a small-size space while distorting the reality as little as possible. Therefore, the most appropriate summary of the initial data must be collected. It is the variance-covariance matrix (or that of the correlations) that will make it possible to produce this relevant summary, essentially by analyzing the dispersion of the data considered.

From this matrix, we will extract, by a suitable mathematical process, the factors we are looking for, in small numbers. This will let us achieve the desired graphics in this small dimensions space, deforming the overall configuration of individuals and initial variables as little as possible. The interpretation of these graphs would allow the structure of the analyzed data to be understood (Bouroche & Saporta 2006), using the Kaiser criterion corresponding to eigenvalues >1 to determine the number of factors to be retained (Kaiser 1960). PCA can provide the function of classification and clustering (Abdi & Williams 2010).

The strength of statistical techniques makes it better to graphical methods to grouping water samples. However, the empirical and graphical methods do, successfully, help to obtain more chemistry information about groups. By combining the two techniques, we can gain additional information that neither technique by itself can offer (Sekiou & Kellil 2014).

Major cations and anions

The descriptive statistical characteristics of position and dispersion are summarized in Table 3. It appears that, for major cations of bottled waters, the calcium contents are between 8.02 mg/l (observed in Bahia water, Morocco) and 413 mg/l (observed in Ben Haroun water, Algeria).

Table 3

Descriptive statistics of the physicochemical parameters of bottled waters in the Maghreb region

ParameterMineral water
Spring water
Table water
MMin-maxSDVCMMin-maxSDVCMMin-maxSDVC
pH 7.14 6.57–7.85 0.28 3.9 7.38 6.92–8.03 0.27 3.6 6.78 6.50–7.11 0.32 4.7 
EC 956.36 275–4.476 907.26 94 662.08 256–1.265 214.51 32 492.83 358.0–656.0 126.50 26 
Ca2+ 89.51 12.02–413 67.31 75 77.49 17.63–134.38 28.53 37 22.73 8.02–40.00 12.97 57 
Mg2+ 29.34 3.16–80.25 21.28 73 19.78 2.64–44 12.91 65 15.23 7.29–27.00 7.88 52 
Na+ 75 5.50–680 135.43 180 32.11 1.16–125.0 30.63 95 46.62 36.50–52.00 6.37 14 
K+ 4.02 0.10–26 5.40 134 1.99 0.21–8 1.78 89 1.84 1.00–3.00 0.94 51 
 355.27 85–1.809 319.00 89 271.25 122–402.6 69.59 25 50.26 24–85.12 22.86 45 
Cl 100.11 10–1.038 176.73 176 43.74 4.00–131 35.86 82 90.78 78.22–140.0 24.44 26 
 74.94 3–514 101.64 136 51.04 3.7–167.88 49.27 97 44.54 10.49–79.75 32.14 72 
 7.12 0.02–34 7.92 111 11.78 0.20–46.5 8.68 74 3.48 0.20–9.18 3.13 90 
 0.00 0–0.02 0.01 – 0.01 0.00–0.01 0.01 – – – – – 
F 0.64 0.3–4.8 0.30 47 0.50 0.19–1 0.27 54 0.66 0.65–0.67 0.02 
ParameterMineral water
Spring water
Table water
MMin-maxSDVCMMin-maxSDVCMMin-maxSDVC
pH 7.14 6.57–7.85 0.28 3.9 7.38 6.92–8.03 0.27 3.6 6.78 6.50–7.11 0.32 4.7 
EC 956.36 275–4.476 907.26 94 662.08 256–1.265 214.51 32 492.83 358.0–656.0 126.50 26 
Ca2+ 89.51 12.02–413 67.31 75 77.49 17.63–134.38 28.53 37 22.73 8.02–40.00 12.97 57 
Mg2+ 29.34 3.16–80.25 21.28 73 19.78 2.64–44 12.91 65 15.23 7.29–27.00 7.88 52 
Na+ 75 5.50–680 135.43 180 32.11 1.16–125.0 30.63 95 46.62 36.50–52.00 6.37 14 
K+ 4.02 0.10–26 5.40 134 1.99 0.21–8 1.78 89 1.84 1.00–3.00 0.94 51 
 355.27 85–1.809 319.00 89 271.25 122–402.6 69.59 25 50.26 24–85.12 22.86 45 
Cl 100.11 10–1.038 176.73 176 43.74 4.00–131 35.86 82 90.78 78.22–140.0 24.44 26 
 74.94 3–514 101.64 136 51.04 3.7–167.88 49.27 97 44.54 10.49–79.75 32.14 72 
 7.12 0.02–34 7.92 111 11.78 0.20–46.5 8.68 74 3.48 0.20–9.18 3.13 90 
 0.00 0–0.02 0.01 – 0.01 0.00–0.01 0.01 – – – – – 
F 0.64 0.3–4.8 0.30 47 0.50 0.19–1 0.27 54 0.66 0.65–0.67 0.02 

EC [μS/cm]. electrical conductivity at 20 °C; Ca2+[mg/l]. calcium ion; Mg2+[mg/l]. magnesium ion; Na+[mg/l]. sodium ion; K+[mg/l]. potassium ion. [mg/l]. bicarbonate ion; Cl[mg/l]. chloride ion; [mg/l]. sulphate ion; [mg/l]. nitrate ion; [mg/l]. nitrite ion; F[mg/l]. fluoride ion.

Min-max. minimum-maximum values; SD. standard deviation; VC. variation coefficient.

Calcium is primarily present in carbonate rocks in water, but is also found in some igneous rock minerals (Potelon & Zysman 1998; Parizot 2008; Rodier et al. 2009). The most possible source of magnesium in water is the dissolution of carbonate rocks, magnesium minerals and soil cation exchange capacity (Potelon & Zysman 1998, Parizot 2008; Rodier et al. 2009). Magnesium concentrations vary from 2.64 mg/l (observed in Besbassa Water, Algeria) to 80.25 mg/l (observed in Oktor water, Tunisia). Sodium is subjected to the same processes of adsorption/desorption as calcium and magnesium, so its dissolution is of comparable complexity, ranging from 1.16 mg/l of sodium (observed in Mileza water, Algeria) to 680 mg/l of sodium (observed also in Ben Haroun water, Algeria).

Mainly found in igneous rocks and clays, potassium is an element rarely detected in groundwater at levels greater than 10 mg/l (Potelon & Zysman 1998, Parizot 2008; Rodier et al. 2009). The potassium concentrations observed in the studied waters are between 0.1 mg/l (at Sidi El Kebir water, Algeria) and 26 mg/l (observed in Oulmes water, Morocco). Whereas, for major anions, it appears that chlorides range from 6.2 mg/l (observed in Mileza water, Algeria) to 1,038 mg/l (observed in Oktor water, Tunisia). Chlorides in groundwater can have multiple origins, particularly water-igneous interactions (Potelon & Zysman 1998, Parizot 2008; Rodier et al. 2009). Bicarbonate contents range from 24 mg/l (observed in Ciel water, Morocco) to 1,809 mg/l (observed in Ben Haroun water, Algeria). In general, bicarbonates derive from the dissolution of carbonate minerals and the action of CO2 in meteoric waters and soils (Potelon & Zysman 1998, Parizot 2008; Rodier et al. 2009). Finally sulfates range from 3 mg/l (observed in Salsabil water, Algeria) to 514 mg/l (Ben Haroun, Algeria). The presence of sulfates in groundwater can have two origins: the oxidation of minerals rich in sulfur, the levels measured are then from a few mg/l to a few tens of mg/l, or the leaching of evaporitic formations, the contents are then of the order of one hundred or thousands of mg/l (Potelon & Zysman 1998, Parizot 2008; Rodier et al. 2009).

These waters have nitrate contents ranging from 0.02 mg/l (observed in Sidi Driss water, Algeria) to 46.5 mg/l (observed in Arwa water, Algeria) and very low nitrite levels (the maximum is less than 0.021 mg/l). Bottled mineral, spring and table waters have fluoride contents ranging from 0.19 mg/l (observed in Melina water, Tunisia) to 4.80 mg/l (observed in Garci water, Tunisia).

It also appears that the bottled mineral waters across this region of the Maghreb have the highest salt load, followed by spring and then table waters. The average electrical conductivity is greater than 900 μS/cm for mineral waters; equal to 662 μS/cm for spring waters and less than 500 μS/cm for table waters (Figure 2).
Figure 2

Physicochemical composition of the Maghreb bottled waters. MW: Mineral water; SW: Spring water; TW: Table water; All parameters are ions in [mg/l] except electrical conductivity (EC) is in [10 μS/cm] unit.

Figure 2

Physicochemical composition of the Maghreb bottled waters. MW: Mineral water; SW: Spring water; TW: Table water; All parameters are ions in [mg/l] except electrical conductivity (EC) is in [10 μS/cm] unit.

Close modal

Generally, the mineral water originates from groundwater; its mineralization is mostly determined by total dissolved solids (TDS) and electrical conductivity (EC). The chemical composition of the mineral water depends heavily on local geological and climatological conditions. The large dispersions in TDS and EC values of mineral waters reveal differences in the mineralogy of the aquifers nature (Sekiou & Kellil 2014). According to Cüneyt et al. (2002), similar water samples often present similar hydrological history, similar recharge areas and similar infiltration and flow paths in terms of climate, mineralogy and residence time. In any way, the water chemistry highly depends on the availability of mineralizing agents, such as temperature, CO2 concentration, redox conditions and the type of adsorption complex (Van der 2003).

The high values of the statistical parameters of dispersion (standard deviation, coefficient of variation and extent) of the chemical components of bottled mineral waters show the great variation in the quality of these waters compared to spring and table waters (Table 3).

The contents of the various chemical elements of bottled mineral waters are lower than the limit values of the Algerian mineral water standards (Jora 2000, 2004, 2006, 2015), the Tunisian mineral water standards (NT 2007a), the European directives of the mineral waters (EEC 2003) and the WHO standards related to the mineral waters (Table 4). In the same way, the spring and table waters of the Maghreb countries comply with the Algerian standards of spring waters (Jora 2000, 2004, 2006, 2015) and those of Tunisian packaged waters (NT 2007b).

Table 4

Drinking standards for bottled waters quality

Parametermineral water (limit values)
Spring water (limit values)
Drinking water (limit values)
Algerian standards
JORA (2015))
Tunisian standards
NT 09.33 (2007a)
EU Directive
EEC (2003) 
WHO standardsAlgerian standards
JORA (2015) 
Tunisian standards
NT 09.83 (2007b)
Algerian standards
JORA (2014))
Tunisian standards
NT 09.14 (2013)
Moroccan standardsWHO standards 2008
Guideline values
EU Directive
EEC (1998) 
pH     6.5–8.5  ≥6.5 et ≤9 >6.5 et <8.5 6.5–8.5  6.5–9.5 
EC     2.800  2.800 >300 et <2.500 2.700  2.500gv 
Ca2+     200  200 200    
Mg2+     150  – 100    
Na+     200  200 200  200a 200 
K+     20  12 –    
      500     
Cl     500  500 500 750 250a 250gv 
     400  400 500 400 500a 250gv 
 50 50 50 50 50 50 50 45 50 50 50 
 0.1 0.1 0.1 0.1 0.02 0.2 0.2 b
3 c 
0.5 0.5 
F 1.5 1.5 1.5 1.5 1.5 1.5 1.5 
Parametermineral water (limit values)
Spring water (limit values)
Drinking water (limit values)
Algerian standards
JORA (2015))
Tunisian standards
NT 09.33 (2007a)
EU Directive
EEC (2003) 
WHO standardsAlgerian standards
JORA (2015) 
Tunisian standards
NT 09.83 (2007b)
Algerian standards
JORA (2014))
Tunisian standards
NT 09.14 (2013)
Moroccan standardsWHO standards 2008
Guideline values
EU Directive
EEC (1998) 
pH     6.5–8.5  ≥6.5 et ≤9 >6.5 et <8.5 6.5–8.5  6.5–9.5 
EC     2.800  2.800 >300 et <2.500 2.700  2.500gv 
Ca2+     200  200 200    
Mg2+     150  – 100    
Na+     200  200 200  200a 200 
K+     20  12 –    
      500     
Cl     500  500 500 750 250a 250gv 
     400  400 500 400 500a 250gv 
 50 50 50 50 50 50 50 45 50 50 50 
 0.1 0.1 0.1 0.1 0.02 0.2 0.2 b
3 c 
0.5 0.5 
F 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

EC [μS/cm], electrical conductivity; Ca2+[mg/l], calcium ion; Mg2+[mg/l], magnesium ion; Na+[mg/l], sodium ion; K+[mg/l], potassium ion; [mg/l], bicarbonate ion ; Cl[mg/l], chloride ion; [mg/l], sulfate ion; [mg/l], nitrate ion; [mg/l], nitrite ion; F[mg/l], fluoride ion.

a, limit for water intended for infant consumption; gv, Guideline value; b, long-term exposure; c, Short- term exposure.

Most bottled waters are loaded with bicarbonates, calcium and magnesium (Table 5). It appears, particularly, that Ca-HCO3 facies is dominant in Algerian and Tunisian mineral waters by 70.37% and 72.72% respectively, while the majority of Moroccan mineral waters are characterized by two facies: Ca-HCO3 and Na-HCO3.

Table 5

Bottled waters distribution by mineral facies, category and country

FaciesAlgeria
Tunisia
Morocco
Total number of bottled water% of bottled water
Mineral waterSpring waterMineral waterSpring waterTable waterMineral waterSpring waterTable water
HCO3 > Ca > Mg
HCO3 > Mg > Ca 
13 – – 28 37.84 
HCO3 > Ca > Na-Cl – – – – 13 17.57 
Ca > HCO3 > SO4-Cl – – – – 11 14.86 
HCO3 > Na > Ca-Mg-Cl – – –  9.46 
Cl-Na – –  – – 8.11 
Ca-SO4 > Mg-HCO3 – – – – – – 5.40 
Others – – –  6.76 
Total 26 14 11 74 100 
FaciesAlgeria
Tunisia
Morocco
Total number of bottled water% of bottled water
Mineral waterSpring waterMineral waterSpring waterTable waterMineral waterSpring waterTable water
HCO3 > Ca > Mg
HCO3 > Mg > Ca 
13 – – 28 37.84 
HCO3 > Ca > Na-Cl – – – – 13 17.57 
Ca > HCO3 > SO4-Cl – – – – 11 14.86 
HCO3 > Na > Ca-Mg-Cl – – –  9.46 
Cl-Na – –  – – 8.11 
Ca-SO4 > Mg-HCO3 – – – – – – 5.40 
Others – – –  6.76 
Total 26 14 11 74 100 

It appears also that all Algerian spring waters, 83.33% of Moroccan spring waters and 71.42% of Tunisian spring waters are classified under the Ca-HCO3 type, while 83.33% of both Tunisian and Moroccan table waters are under the Na-Cl type.

Empirical and graphical classifications

According to the European Economic Community (EEC 2009), the classification of mineral waters, in terms of TDS, shows that 52% of the bottled mineral water fall in the range of ‘moderately mineralized’ (TDS > 500 mg/l), whereas 48% as ‘oligomineral’ waters (TDS < 500 mg/l).

As regard to nutritional benefits, the Maghreb waters are well known by some characteristics, Table 6 illustrates these cases, it appears that 9.5% of these bottled waters are considered containing magnesium, 6.7% containing chloride, 6.7% containing calcium 5.5% containing sodium 4% of containing sulfate, and particularly 32.87% of waters are recommended for a low-sodium diet.

Table 6

Distribution of water brands in the Maghreb countries with respect to their major characteristics

Water CharacteristicsAlgeria
Tunisia
Morocco
Water brandWater typeWater brandWater typeWater brandWater type
Rich in mineral salts (TDS greater than 1,500 mg/l) Ben Haroun
Mouzaia 
mineral Oktor
Garci 
mineral Oulmes mineral 
Containing sulfate ( > 200 mg/l) Ben Haroun
N'gaous 
mineral Oktor mineral – – 
Containing chloride (Cl > 200 mg/l) Ben Haroun mineral Oktor
Garci 
mineral Oulmes
Sidi Harazem 
mineral 
Containing bicarbonate ( > 600 mg/l) Ben Haroun
Mouzaia 
mineral Garci mineral Oulmes mineral 
Containing calcium (Ca2+ > 150 mg/l) Ben Haroun
Bourached 
mineral Oktor
Garci 
mineral Oulmes mineral 
Containing magnesium (Mg2+ > 50 mg/l) Mouzaia
N'gaous
Ben Haroun
Mensourah 
mineral Oktor
Garci 
mineral Oulmes mineral 
Containing sodium (Na+ > 200 mg/l) Ben Haroun mineral Oktor
Garci 
mineral Oulmes mineral 
Containing fluoride (F > 1 mg/l) – – Garci
Sabrine 
mineral – – 
Suitable for a low-sodium diet (Na+ < 20 mg/l) 14 watersa 10 mineral
4 spring 
5 watersb 3 mineral
2 spring 
6 watersc 1 mineral
5 spring 
Water CharacteristicsAlgeria
Tunisia
Morocco
Water brandWater typeWater brandWater typeWater brandWater type
Rich in mineral salts (TDS greater than 1,500 mg/l) Ben Haroun
Mouzaia 
mineral Oktor
Garci 
mineral Oulmes mineral 
Containing sulfate ( > 200 mg/l) Ben Haroun
N'gaous 
mineral Oktor mineral – – 
Containing chloride (Cl > 200 mg/l) Ben Haroun mineral Oktor
Garci 
mineral Oulmes
Sidi Harazem 
mineral 
Containing bicarbonate ( > 600 mg/l) Ben Haroun
Mouzaia 
mineral Garci mineral Oulmes mineral 
Containing calcium (Ca2+ > 150 mg/l) Ben Haroun
Bourached 
mineral Oktor
Garci 
mineral Oulmes mineral 
Containing magnesium (Mg2+ > 50 mg/l) Mouzaia
N'gaous
Ben Haroun
Mensourah 
mineral Oktor
Garci 
mineral Oulmes mineral 
Containing sodium (Na+ > 200 mg/l) Ben Haroun mineral Oktor
Garci 
mineral Oulmes mineral 
Containing fluoride (F > 1 mg/l) – – Garci
Sabrine 
mineral – – 
Suitable for a low-sodium diet (Na+ < 20 mg/l) 14 watersa 10 mineral
4 spring 
5 watersb 3 mineral
2 spring 
6 watersc 1 mineral
5 spring 

aSalsabil, Ifri, Chifa, Hammemet, Batna, Youkous, Ain Souda, Milok, Sidi Driss, Lalla Khadija, Besbassa, Mileza Manbaa ELghozlane Nestlé.

bSafia Ain Mizeb, Fourat, Hayet, Palma, Dima.

cAin Saiss, Cristaline, Chaouen, Ain Soltane, Ain Ifrane, Rif.

It is very important to notice that the entire waters characteristics are mineral waters, with the exception of waters suitable for a low-sodium diet which 44% are spring. Also five mineral waters are considered as rich in mineral salts and no waters correspond to a very low mineral content (TDS < 50 mg/l).

Referring to the legal limits, it appears that among the characteristic waters, the Ben Haroun Algerian mineral water brand exceeds the limit values of Algerian, Moroccan, WHO and EU standards of water intended for human use (N.M. 1991; EEC 1998; Jora 2011, 2014) in term of EC, calcium, sodium and sulfate; Oktor Tunisian mineral water brand exceeds these limit values in terms of EC, calcium, sodium, potassium and chloride; Garci Tunisian mineral water brand exceeds also these limit values in terms of EC, sodium, potassium and fluoride; and finally Oulmes Moroccan mineral water brand exceeds the limit value of standards in terms of sodium. The multiple exceeding of limit values of water standards calls into question the abundant and long-term consumption of these waters.

Stuyfzand classification shows that 66 bottled waters brands among 74 studied are considered oligohaline to fresh, more precisely 34 mineral waters, 26 spring waters and 6 table waters. The same classification shows that 87.84% of bottled waters brands have an alkalinity ranging from moderately low to moderately high, more precisely 35 mineral waters, 26 spring waters and 2 table waters (Table 7).

Table 7

Hydrochemical types of bottled waters according to Stuyfzand classification

Water characteristicsAlgeria
Tunisia
Morocco
Total number of bottled water% of bottled water
Mineral waterSpring waterMineral waterSpring waterTable waterMineral waterSpring waterTable water
Main type according to chloride Very oligohaline ([Cl] < 5 mg/l)        1.35% 
Oligohaline (5 ≤[Cl] < 30 mg/l) 10   29 39.19% 
Fresh (30 ≤[Cl] < 150 mg/l) 13 10   37 50% 
Fresh-brackish (150 ≤[Cl] < 300 mg/l)       5.41% 
Brackish (300 ≤[Cl] < 1.000 mg/l       4.05% 
Total 26 14 11 7 2 4 6 4 74 100% 
Type according to alkalinity Very low (Alk < 0.5 meq/l)        1.35% 
Low (0.5 ≤Alk <1 meq/l)        4.05% 
Moderately low (1 ≤Alk < 2 meq/l)     9.46% 
Moderate (2 ≤Alk < 4 meq/l)     17 22.97% 
Moderately high (4 ≤Alk < 8 meq/l) 14   41 55.41% 
High (8 ≤Alk < 16 meq/l)      4.05% 
Very high (16 ≤Alk < 32 meq/l)       2.70% 
Total 26 14 11 7 2 4 6 4 74 100% 
Water characteristicsAlgeria
Tunisia
Morocco
Total number of bottled water% of bottled water
Mineral waterSpring waterMineral waterSpring waterTable waterMineral waterSpring waterTable water
Main type according to chloride Very oligohaline ([Cl] < 5 mg/l)        1.35% 
Oligohaline (5 ≤[Cl] < 30 mg/l) 10   29 39.19% 
Fresh (30 ≤[Cl] < 150 mg/l) 13 10   37 50% 
Fresh-brackish (150 ≤[Cl] < 300 mg/l)       5.41% 
Brackish (300 ≤[Cl] < 1.000 mg/l       4.05% 
Total 26 14 11 7 2 4 6 4 74 100% 
Type according to alkalinity Very low (Alk < 0.5 meq/l)        1.35% 
Low (0.5 ≤Alk <1 meq/l)        4.05% 
Moderately low (1 ≤Alk < 2 meq/l)     9.46% 
Moderate (2 ≤Alk < 4 meq/l)     17 22.97% 
Moderately high (4 ≤Alk < 8 meq/l) 14   41 55.41% 
High (8 ≤Alk < 16 meq/l)      4.05% 
Very high (16 ≤Alk < 32 meq/l)       2.70% 
Total 26 14 11 7 2 4 6 4 74 100% 

The projection of natural mineral, spring and table waters on the Piper diagram (Figure 3) shows that the majority of bottled waters brands (72%) are Ca + Mg-HCO3 facies, 12% are Ca + Mg-SO4 + Cl facies, 7% are Na + K-HCO3 facies and almost 5% are Na-Cl facies. It appears that each facies or determined class contains in different proportion the three types of water namely mineral, spring and table waters. Each bottled water or each country is not distinguished by a single facies or class (Tables 5 and 7).
Figure 3

Piper diagram showing major ions and facies of bottled waters.

Figure 3

Piper diagram showing major ions and facies of bottled waters.

Close modal

Empirical and graphical methods provide useful and quickly accessible chemistry details about bottled waters (degree of mineralization, hardness, alkalinity, salt richness, facies, etc.) and allow for modest water classification.

These techniques have a number of disadvantages; in particular: they are monovariable or at most based on a few variables, as is the case with Suyfzand's method, which does not allow explanatory graphic illustration.

The piper approach offers an explanatory visual example but uses a small number of parameters as well (major ions).These analytical and graphical methods provide modest details to differentiate between distinct groups.

Multivariate statistical classification

Multivariate statistical techniques offer a great tool for analyzing physico-chemical data of bottled waters and determine if these waters can be categorized into separate classes. The PCA reduces the number of dimensions present in data,

The result indicates that the key variables are comprised in two principal components (corresponding to eigenvalues >1).

Figure 4 shows the projection of the bottled waters on the 1–2 plane of the PCA with explained variance more than 83%, the first principal component contains 72.35% of the total variance and the second component presents 11.09%. The dominant water quality parameter is electrical conductivity; it appears in the extreme nature: Ben Haroun mineral water of Algeria, Oktor and Garci mineral waters of Tunisia and Oulmes mineral water of Morocco.
Figure 4

Bottled waters brands projection on the 1–2 plane of PCA.

Figure 4

Bottled waters brands projection on the 1–2 plane of PCA.

Close modal
On the other hand, Figure 5 illustrates the dendrogram of hierarchical classification (Ward method, Euclidean distance) of bottled waters; the method of Ward is different from all other approaches because it uses an ANOVA method to determine the distances between clusters (Cüneyt et al. 2002) and it gives better results with fewer samples and variables (Bu et al. (2020).
Figure 5

Classification dendrogram of the bottled waters brands.

Figure 5

Classification dendrogram of the bottled waters brands.

Close modal
Results indicate that it is possible to break the bottled waters into four main groups. Those of the first group, includes five brand mineral waters, (Ben Haroun, Oktor, Garci, Oulmes and Mouzaia) are the most mineralized, with an average EC of more than 3,000 μS/cm, an average EC of 955 μS/cm in the second group and an average EC of 670 μS/cm in the third group, while the EC of the fourth group is around 300 μS/cm (Figure 6).
Figure 6

Composition of bottled waters groups. All parameters are ions in [mg/l] except EC is in 10 μS/cm unit.

Figure 6

Composition of bottled waters groups. All parameters are ions in [mg/l] except EC is in 10 μS/cm unit.

Close modal

This hierarchical classification analysis confirms the extreme quality of Ben Haroun, Oktor, Garci, Oulmes and Mouzaia waters (Group 1 in Figure 4). In Figure 3, the point cloud reveals a continuous variation of the chemical properties of bottled waters: no coincidence between groups, we have delimited the groups as determined by the HCA.

The KMC method is used to validate the composition of each group resulting from the HCA classification, with the number of clusters selected being equal to four clusters. It appears that, KMC analysis placed more than 98% of the samples within the same groups; The KMC results are largely consistent with those of the PCA and HCA.

The application of variance analysis shows that the inter-group differences are, at the thresholds of 5%, significantly higher than the intra-group differences. It comes that groups established are distinct and significantly different (Table 8).

Table 8

Synthesis of ANOVA analysis

ParameterSS modeldf between groupsSS Erreurdf within groupsFp
EC 79696230 5739391 69 319.37 0.0000 
Ca2+ 612815 86059 69 163.78 0.0000 
Mg2+ 65358 4416 69 340.40 0.0000 
Na+ 873258 161272 69 124.54 0.0000 
K+ 1696 344 69 113.401 0.0000 
 7543844 2200072 69 78.86 0.0000 
Cl 1339232 462462 69 66.61 0.000000 
 473591 321866 69 33.84 0.000000 
ParameterSS modeldf between groupsSS Erreurdf within groupsFp
EC 79696230 5739391 69 319.37 0.0000 
Ca2+ 612815 86059 69 163.78 0.0000 
Mg2+ 65358 4416 69 340.40 0.0000 
Na+ 873258 161272 69 124.54 0.0000 
K+ 1696 344 69 113.401 0.0000 
 7543844 2200072 69 78.86 0.0000 
Cl 1339232 462462 69 66.61 0.000000 
 473591 321866 69 33.84 0.000000 

EC [μS/cm], electrical conductivity; Ca2+ [mg/l], calcium ion; Mg2+ [mg/l], magnesium ion; Na+ [mg/l], sodium ion; K+ [mg/l], potassium ion; [mg/l], bicarbonate ion ; Cl[mg/l], chloride ion; [mg/l], sulfate ion; SS, sum of squares; df, degrees of freedom; F, F test statistic; P, p-value.

Multivariate statistical techniques are very efficient at grouping bottled waters by physical and chemical similarities, but as noted by Cüneyt et al. (2002), they are not immediately useful for identifying trends and chemical interpretation.

The drawback of multivariate statistical techniques is that they do not provide adequate information on the chemistry of the identified groups; on the other hand, the graphical and empirical methods provide useful information on the existence and chemical facies of groups.

Therefore, the combination of multivariable statistical methods and graphical and analytical techniques provides for this reason a solid means of classifying the bottled waters of the Maghreb countries, while at the same time retaining the ease of graphical representation and chemical analysis of water groups.

This article provides the first survey on the physico-chemical composition of bottled natural mineral, spring and table waters of the Maghreb countries. In addition to water quality analysis, this paper discusses the empirical, graphical and multivariate classification of these waters namely: Stuyfzand, classification, Piper classification, PCA classification, HCA classification, KMC classification and ANOVA analysis.

Referring to the Algerian, Tunisian, the European Union (EU) and the World Health Organization (WHO) standards, our survey showed that the concentrations of the different chemical parameters are lower than the limit values of the standards of mineral, spring and conditioned waters.

It appears from this study that Ca-HCO3 facies is the dominant facies of Algerian and Tunisian mineral waters, while the majority of Moroccan mineral waters are characterized by Ca + Na-HCO3 facies. All Algerian spring waters and the majority of Tunisian and Moroccan ones are Ca-HCO3 facies, while the majority of table waters are Na-Cl facies. The bottled waters of the Maghreb countries are marked by some key characteristics: sulphated, chlorinated, bicarbonated, containing calcium, sodium and fluoride and referring to the diet with low sodium.

Empirical and graphical techniques provide useful and rapid information on bottled water chemistry, but these techniques are based on monovariable or bivariable analysis or, in the best cases, on the use of major ions. The classification of Stuyfzand does not group the data into chemical classes and little detail is given by the Piper diagram to distinguish between the separate groups.

Multivariable statistical techniques, unlike these classifications, are not limited by the number of parameters and are very successful in grouping bottled waters into separate groups, but do not include any water chemistry information.

For this reason, the combination of the two methods makes it possible to provide a classification methodology that allows the preservation of the advantages of each technique, thus enabling the bottled waters of the Maghreb countries to be classified in a multivariate manner, while at the same time maintaining the ease of graphic presentation and the interpretation of separate groups of waters.

The classification result shows essentially that bottled waters of the Maghreb countries can be divided into four main distinct groups. The first group includes five characteristic mineral waters rich in salts: Ben Haroun, Oktor, Garci, Oulmes and Mouzaia, with Na + K-Cl facies. The waters of the second group are marked by two facies: Ca + Mg-HCO3 and Ca + Mg-Cl+ SO4, while the waters of the third and the fourth groups are essentially marked by Ca + Mg-HCO3 facies.

With respect to recommended daily amount for consumption, because the mineral content varies so widely between different kinds of mineral water, there are only guidelines for how much nutrients (calcium, magnesium, …) human should get in mineral water.

The authors are thankful to the anonymous reviewers for their careful reading and precious comments.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

The authors are not affiliated with or involved with any organization or entity with any financial interest or nonfinancial interest in the subject matter or materials discussed in this paper.

The authors declare there is no conflict.

All relevant data are included in the paper or its Supplementary Information.

Abdi
H.
&
Williams
L. J.
2010
Principal component analysis
.
Wiley Interdisciplinary Reviews: Computational Statistics
2
,
433
459
.
https://doi.org/10.1002/wics.101
.
Alfaifi
H. J.
2019
Combined graphical and geostatistical technique to determine the hydrochemical processes affecting groundwater chemistry in coast alareas
.
Western Saudi Arabia Arabian Journal of Geosciences
12
(
65
).
doi:10.1007/s12517-018-4178-y
.
Aslani
H.
,
Pashmtab
P.
,
Shaghaghi
A.
,
Mohammadpoorasl
A.
,
Taghipour
H.
&
Zarei
M.
2021
Tendencies towards bottled drinking water consumption: challenges ahead of polyethylene terephthalate (PET) waste management
.
Health Promotion Perspectives
11
(
1
),
60
68
.
doi:10.34172/hpp.2021.09
.
Beyene
G.
,
Aberra
D.
&
Fufa
F.
2019
Evaluation of the suitability of groundwater for drinking and irrigation purposes in Jimma Zone of Oromia, Ethiopia. Groundwater for Sustainable Development 9, 100216. https://doi.org/10.1016/j.gsd.2019.100216
Boral
S.
,
Sen
I. S.
,
Tripathi
A.
,
Sharma
B.
&
Dhar
S.
2020
Tracking dissolved trace and heavy metals in the Ganga River from source to sink: a baseline to judge future changes
.
Geochemistry, Geophysics, Geosystems
21
,
e2020GC009203
.
https://doi.org/10.1029/2020GC009203
.
Bouroche
J.
&
Saporta
G.
2006
L'analyse des données (Data Analysis). Paris, ISBN: 9782130554448. DOI: 10.3917/puf.bouro.2006.01. https://www.cairn.info/l-analyse-des-donnees--9782130554448.htm.
Bu
J.
,
Liu
W.
,
Pan
Z.
&
Ling
K.
2020
Comparative study of hydrochemical classification based on different hierarchical cluster analysis methods
.
International Journal of Environmental Research and Public Health
17
,
9515
.
doi:10.3390/ijerph17249515
.
Cüneyt
G.
2007
Characterization of turkish bottled waters using pattern recognition methods
.
Chemometrics and Intelligent Laboratory Systems
86
,
86
94
.
doi:10.1016/j.chemolab.2006.08.009
.
Cüneyt
G.
,
Geoffrey
D.
,
Thyne
J. E.
&
Mccray
K. T.
2002
Evaluation of Graphical and Multivariate Statistical Methods for Classification of Water Chemistry Data
.
Springer-Verlag
,
France
.
doi:10.1007/s10040-002-0196-6
.
Davidson
I.
2002
Understanding K-Means Non-Hierarchical Clustering
.
SUNY Albany – Technical Report 02-2
.
Doria
M. D.
2006
Bottled water versus tap water: understanding consumers’ preferences
.
Journal of Water and Health
4
(
2
),
271
276
.
doi:10.2166/wh.2006.008
EEC
1998
Council Directive 98/83/EC of 3.Nov.1998: quality of water intended for human consumption’ into the national laws in the EU associated countries
.
EEC 2003 Commission directive 2003/40/EC of 16 May 2003 establishing the list, concentration limits and labelling requirements for the constituents of natural mineral waters and the conditions for using ozone-enriched air for the treatment of natural mineral waters and spring water, Official Journal of the European Union L 126/34 of 22/5/2003
.
EEC
2009
Directives /54/EC of the European Parliament and of the Council of 18 June 2009 relating to the exploitation and marketing of natural mineral waters, Official Journal of the European Union, L164/45 of 26/06/2009
.
Eggenkamp
H. G. M.
&
Marques
J. M.
2013
A comparison of mineral water classification techniques: occurrence and distribution of different water types in Portugal (including Madeira and the Azores)
.
Journal of Geochemical Exploration
132
,
125
139
.
doi:10.1016/j.gexplo.2013.06.009
.
Felipe-Sotelo
M.
,
Henshall-Bell
E. R.
,
Evans N
D. M.
&
Read
D.
2015
Comparison of the chemical composition of British and Continental European bottled waters bymultivariate analysis
.
Journal of Food Composition and Analysis
39
,
33
42
.
doi:10.1016/j.jfca.2014.10.014
.
Gaetano
R.
,
Michele
D.
&
Giuseppina
I.
2007
An application of cluster analysis and multivariate classification method to spring water monitoring data
.
Microchemical Journal
,
119
127
.
doi:10.1 016/j.microc.2007.06.003
.
Geerts
R.
,
Vandermoere
F.
,
Winckel
T. V.
,
Halet
D.
,
Joos
P.
,
Katleen
V. D. S.
,
Meenen
E. V.
,
Blust
R.
,
Borregan
E.-O.
&
Vlaeminck
S. E.
2020
Bottle or tap? Toward an integrated approach to water type consumption
.
Water Research
173
,
115578
.
Gharbi
F.
,
Baccouche
S.
,
Samaali M
W. A.
,
Oueslati
M.
&
Trabelsi
A.
2010
Uranium isotopes in Tunisian bottled mineral waters
.
Journal of Environmental Radioactivity
101
,
589
590
.
Gharibi
E.
,
Ghalit
M.
,
Taupin
J.-D.
,
Patris
N.
&
Kouotou
D.
2018
Assessment of the quality of Moroccan bottled water by application of quality indices
.
Journal of Water Supply: Research and Technology – AQUA
67
(
6
).
Grošelj
N.
,
Veer
G.
,
Tušar
M.
,
Vracko
M.
&
Novic
M.
2010
Verification of the geological origin of bottled mineral water using artificial neural networks
.
Food Chemistry
118
,
941
947
.
doi:10.1016/j.foodchem.2008.11.085.
Horowitz
N.
,
Frago
J.
&
Mu
D.
2018
Life cycle assessment of bottled water: a case study of green2o products
.
Waste Management
6
,
734
743
.
Huang
L.
&
Liu
Y.
2017
Health information and consumer learning in the bottled water market
.
International Journal of Industrial Organization
55
,
1
24
.
Jora
2000
Decree of 24 Rabie Ethani 1421 corresponding to 26 July 2000 relating to the specifications of pre-packaged drinking water and the modalities of presentation. Official Journal of the Algerian Republic N°51 of August 20, 2000.
Jora
2004
Executive decree n°04-196 of 27 Joumada 1425 cooresponding to July 15, 2004, relating to the exploitation and the protection of natural mineral waters and spring waters. Official Journal of the Algerian Republic N°45 of July 18, 2004.
Jora
2006
Inter-ministerial decree of 22 Dhou El Hidja 1426 corresponding to January 22, 2006 fixing the proportions of elements contained in natural mineral waters and spring waters as well as the conditions of their treatment or the authorized additions, pp. 9–15.
Jora
2011
Executive Decree n° 11-125 of 17 Rabie Ethani 1432 corresponding to 22 March 2011 on the quality of water for human consumption. Official Journal of the Algerian Republic N°18 of March 23, 2011, pp. 6–9.
Jora
2014
Executive Decree No. 14-96 of March 4, 2014, on the quality of water for human consumption. Official Journal of the Algerian Republic N°13 of March 9, 2014, pp. 15–17.
Jora
2015
Inter-ministerial decree of 29 Dhou Hidja 1435 corresponding to October 23, 2014 amending and supplementing the inter-ministerial decree of 22Dhou EL Hidja 1426 corresponding to January 22, 2006 fixing the proportions of elements contained in natural mineral waters and spring waters as well as the conditions of their treatment or the authorized additions. Official Journal of the Algerian Republic N° 03 of January 27th, pp. 25–27
.
Kaiser
H. F.
1960
The application of electronic computers to factor analysis
.
Educational and Psychological Measurement
20
,
141
151
.
Kaushik
M.
&
Mathur
B.
2014
Comparative study of K-means and hierarchical clustering techniques
.
International Journal of Software and Hardeware Research in Engineering
2
(
6
),
93
98
.
Kerdoun
M. A.
,
Bouaziz
H.
,
Adjaine
O. E.
,
Mekhloufi
S. C.
,
Bechki
Z.
&
Belkhalfa
H.
2021
Fluoride concentration in bottled drinking water from a fluoride endemic area: a market-based survey
.
Clinical Nutrition ESPEN
46
,
147
151
.
Kloppmann
W.
,
Bourhane
A.
&
Asfirane
F.
2011
Méthodologie de diagnostic de l'origine de la salinité des masses d'eau, emploi des outils géochimiques isotopiques et géophysiques (Methodology of Diagnosis of the Origin of Salinity of Water Bodies, use of Geochemical Isotopic and Geophysical Tools)
.
Onema, Brgm
, p.
129
.
Labadi
A. S.
&
Hammache
H.
2016
Etude comparative des eaux minérales et des eaux de sources produites en Algerie
.
Larhyss Journal
28
,
319
342
.
ISSN 1112-3680, n°28, pp. 319–342
.
Liidia
B.
&
Valter
P.
2010
Chemical composition of bottled mineral waters in Estonia
.
Journal of Geochemical Exploration
107
,
238
244
.
doi:10.1016/j.gexplo.2010.07.006
.
Lourenço
A.
,
Ribeiro
B.
&
Cruz
J.
2010
Classification of natural mineral and spring bottled waters of Portugal using principal component analysis
.
Journal of Geochemical Exploration
107
,
362
372
.
doi:10.1016/j.gexplo.2010.08.001
.
Marc-henri
D.
2004
Géochimie des eaux de sources et interaction eau roche dans les alpes (Geochemistry of Spring Water and Water-Rock Interaction in the Alps)
.
Quanterra short course 08f
, p.
18
.
Mcqueen
J.
1967
Some methods for classification and analysis of multivariate observations
. In:
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
, Vol.
1
,
Statistics, University of California Press
,
Berkeley, California
, pp.
281
297
.
Miguel
F. D.
2006
Bottled water versus tap water: understanding consumers’ preferences
.
Journal of Water and Health
4
(
2
),
271
276
.
doi:10.2166/wh.2006.008
.
Moreno-Merino
L.
,
Aguilera
H.
&
de la Losa Román
A.
2022
Are bottled mineral waters and groundwater for human supply different?
Science of The Total Environment
835
,
155554
.
NM
1991
Moroccan standard 03.7.001 relating to the quality of water for human consumption, approved by decree n° 359-91 of 23 rejeb 1411 of 8 February 1991
.
NT
2007a
Tunisian Standard 09.33, for Packaged Natural Mineral Waters
.
NT
2007b
Tunisian Standard 09.83, General Standard for Bottled/Packaged Drinking Water
.
NT
2013
Tunisian Standard 09.14, Waters Intended for Human Consumption, Excluding Packaged Waters
.
Olive
P.
1996
Introduction à la géochimie des eaux continentale (Introduction to Continental Water Geochemistry)
.
Iditura Didactica si pedagogica, R.A. Bucuresti
, p.
130
.
Parizot
M.
2008
Contrôle de surveillance de la qualité des masses d'eau souterraine de la Guyane conformément à la Directive Cadre Européenne sur l'Eau (Monitoring the Quality of Groundwater Bodies in French Guiana in Accordance with the European Water Framework Directive). Final Report BRGM/RP-56890-FR
.
Piper
A. M.
1944
A graphic procedure in the geochemical interpretation of water-analyses
.
Eos Transactions American Geophysical Union
25
,
914
928
.
doi:10.1029/TR025i006p00914
.
Potelon
J. L.
&
Zysman
K.
1998
Guide des analyses d'eau potable, Collection Dossier d'experts. /03, pages 253p., ann., réf. 3p., ISBN 2-84130-247-4, Edition La Lettre du Cadre Territorial, Voiron, France
.
Rajesh
R.
,
Murthy
T. R. S.
&
Raghavan
B. R.
2002
The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka
.
India Water Research
36
,
2437
2442
.
doi:10.1016/s0043-1354(01)00490-0
.
Rasouli
F.
&
Pouya
A.
2012
Hydrogeochemistry and water quality assessment of the kor – Sivand basin, Fars province, Iran
.
Environmental Monitoring and Assessment
184
,
4861
4877
.
doi:10.1007/s10661-011-2308-z
.
Rodier
J.
,
Legube
B.
,
Merlet
N.
&
Brunet
R.
2009
L'analyse de l'eau : Eaux naturelles, eaux résiduaires, eau de mer (Water Analysis: Natural Water, Waste Water, sea Water)
, 9th edn.
Paris
,
Dunod
, p.
1600
.
Saleh
M. A.
,
Ewane
E.
,
Jones
J.
&
Wilson
B. L.
2001
Chemical evaluation of commercial bottled drinking water from Egypt
.
Journal of Food Composition and Analysis
14
,
127
152
.
doi:10.1006/jfca.2000.0858
.
Sekiou
F.
&
Kellil
A.
2014
Caractérisation et classification empirique, graphique et statistique multivariable d'eaux de source embouteillées de l'Algérie (Empirical, graphical and multivariate statistical characterization and classification of bottled spring waters from Algeria)
.
Larhyss Journal
20
,
225
246
.
Sghaier
T.
&
Ben abdallah
M. A.
2018
Etude comparative de la composition physico-chimique de vingt marques d'eaux conditionnées et commercialisées en Tunisie
.
Journal of Newsciences
56
(
3
),
3671
3686
.
Simler
R.
2014
Diagrammes Software
.
Laboratoire d'hydrogéologie d'Avignon
.
Stuyfzand
P. J.
1986
A new hydrochemical classification of water types: principles and application to the coastal dunes aquifer system of the Netherlands
. In
Proc. 9th Salt Water Intrusion Meeting
,
Delft Univ. Techn (ed.)
,
12–16 May 1986
,
Delft
, pp.
641
655
.
Stuyfzand
P. J.
1989
A new hydrochemical classification of water types
. In
Regional Characterization of Water Quality Proceedings of the Baltimore Symposium
,
IAHSPubI
. Vol.
182
.
Tanaskovic
A.
,
Dusan
G. B.
&
Miljevid
N.
2012
Multivariate statistical anlysis of hydrochemical and radiological data of Serbian Spa waters
.
Journal of Geochimical Exploration
112
,
226
234
.
doi:10.3390/w12041127
.
Totaro
M.
,
Casini
B.
,
Valentini
P.
,
Miccoli
M.
,
Lopalco
L. P.
&
Baggiani
A.
2018
Assessing natural mineral water microbiology quality in the absence of cultivable pathogen bacteria
.
Journal of Water and Healt
16
(
3
),
425
434
.
doi:10.2166/wh.2018.183
.
USFDA
2022
Food and Drugs (sec. Bottled Water)
.
Code of Federal regulations, CFR21
, Vol.
2
.
Van der
A.
2003
Classification of mineral water types and comparison with drinking water standards
.
Environmental Geology
44
,
554
563
.
doi:10.1007/s00254-003-0791-4
.
Worley
B.
&
Powers
R.
2013
Multivariate analysis in metabolomics
.
Current Metabolomics
1
,
92
107
.
doi:10.2174/2213235X11301010092
.
Yekdeli
A. K.
,
Tabaraki
R. A.
,
Karimi
H. B.
,
Nikorazm
M. C.
&
Abbasi
S. C.
2010
Classification of Iranian bottled waters as indicated by manufacturer's labellings
.
Food Chemistry
120
,
1218
1223
.
doi: 10.1016/j.foodchem.2009.11.067
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).