Most previous studies have focused on adjustable complex flap gates and little research has been carried out on simple inline top-hinged plates for flow measurement. The present study investigates discharge measurement by top-hinged plates located along channels under free flow condition. The proposed simple device is a portable one. Two discharge models are proposed based on Buckingham's theorem of dimensional analysis. The first model (Model I) considers deflection angle as an independent variable while the second model (Model II) considers it as a dependent variable. A series of laboratory experiments (687 runs) were performed to calibrate the proposed models. The results showed that when the slope of the channel increases, the accuracy of the proposed model slightly decreases. The first model has an average error of 2.32%, while the second model has an average error of 3.19%, thus flow discharge through the rectangular channels with longitudinal slopes in range of [0, 0.005] can be accurately estimated using the proposed discharge models. Based on this experimental study, the plate length enhances the performance of the second model when the mass plate is unknown. The proposed device offers a simple and reliable discharge measurement approach for both horizontal and sloping rectangular channels.

  • Portable top-hinged plate is studied as a simple and low-cost water measuring device.

  • Experiments are performed to formulate discharge of in-line top-hinged plate.

  • Effects of the channel slope and plate width are investigated.

  • Extensive error analysis presents for developed general discharge relations.

  • The proposed discharge relations are general, accurate and simple.

Graphical Abstract

Graphical Abstract
ai and bi

empirical coefficients [i = 1, 2 …] (-);

B

rectangular open channel width (m);

b

top-hinged plate width (m);

f

functional symbol;

g

the acceleration due to gravity (m/s2);

h

upstream water depth (m);

L

top-hinged plate length (m);

M

mass of the hinged plate without its axis (kg);

P

plate opening height [=2Lsin2(θ/2)] (m);

Q

flow discharge (m3/s);

Qcal

calculated flow discharge (m3/s);

Qm

measured flow discharge (m3/s);

R

Reynolds number (–);

S

channel longitudinal slope (m/m);

t

top-hinged plate thickness (m);

W

Weber number (–);

ρ

water density (kg/m3);

μ

water dynamic viscosity (Ns/m2);

σ

water surface tension (N/m);

dimensionless group;

ψ

functional symbol;

θ

angle of deflection (degree);

ν

kinematic water viscosity [=10−6] (m2/s).

The use of a measuring device is vital to developing water-saving irrigation methods. The primary basis for implementing precise irrigation is to accurately measure the flow discharge. The use of flow discharge measuring technology is important to better manage the irrigated areas and improve water transfer, water diversion and water allocation. There have been many achievements in research on flow discharge measurement devices such as weirs, flumes, orifices, and gates. These devices are available for flow measurements in water conveyance channels and irrigation and drainage networks. Simple measuring structures are expanded in recent years and different types of them have been developed. Weirs and sluice gates generally used in rectangular and trapezoidal open channels. Application of simple measuring devices is also extended to non-rectangular open channels. Recently, discharge equations of sharp-crested circular weirs are developed for flow discharge estimation in circular open channels under free-flow conditions (Vatankhah 2010; Bijankhan & Ferro 2018; Shabanlou 2018). The hydraulic behavior of the sluice gates located in the circular open channels is also investigated (Hoseini & Vatankhah 2020; Vatankhah & Hoseini 2020). Installing the flow measurement structure may affect the upstream flow conditions in the channel and may cause sediment deposits upstream from the measurement device. The installation of weirs, gates and flumes is difficult and may cause some damages to the channel section.

Generally, simple flow measuring structures are preferred due to low maintenance and construction costs and there is a need to investigate the flow processes leading to the simple flow measuring devices. Flap gates are one of the flow-measuring devices and are designed to automatically control upstream water elevation as well as measuring the flow discharge. They commonly used at downstream end of open channels, especially sewage channels, for controlling and measuring the flow discharge (Belaud et al. 2008). The flap gate behaves as a broad-crested weir for large opening angles, while it behaves as an orifice for small opening angles (Belaud et al. 2008). Burrows (1986) studied a hinged flap gate at the outfall into the downstream tank. Burrows et al. (1997) also studied circular flap gates on river outfalls. The proposed model was based on the principle of the conservation of angular momentum. Raemy & Hager (1998) used flap gates only for controlling upstream water elevation in small open channels and proposed a comprehensive model. The flap gate needs no electric power and no manual adjustment for a range of flow discharge variations (Burt et al. 2001). Litrico et al. (2005) proposed an efficient mathematical model of an automatic upstream water-level control, which was based on the flap gate. This flap gate controls upstream water level close to a reference level by its own counterweight. Litrico et al. (2005) derived a mathematical model then they used experimental data and data from literature to evaluate and validate the proposed mathematical model. Tariq & Masood (2001) used a hinged rod to measure flow velocity. Their device was a rectangular wooden rod. In this study, the mathematical model was developed based on the moment equation, and then calibrated by experimental data. This technique is acceptable for the flow velocity less than 1 m/s and the flow depth less than 45 cm.

More recently, Vatankhah & Ghaderinia (2018) proposed simple hinged semi-circular plates (a plate flowmeter without any counterweight) for discharge measurement along the circular open channels under the free-flow condition. This portable device was established vertically along the channel and deviated due to the flow forces. According to the angle deviation and the upstream water depth, two models were proposed for flow discharge estimation based on Buckingham's theorem of dimensional analysis. They programmed a series of laboratory experiments for two horizontal circular channels to calibrate the proposed models.

Review of the literature concerning flap gates and similar devices indicates that most previous studies have focused on adjustable complex flap gates with a counterweight installed at downstream end of pipes or open channels for flow depth control or flow measurement and little researches has been carried out on simple inline flap gates without any counterweight for flow measurement. This research focuses on the capability of simple inline top-hinged plates for flow measurement. This study introduces a simple portable device for flow measurement in rectangular open channels, which called top-hinged plate. The top-hinged plates were installed in a rectangular channel, and experimental data were gathered and hydraulic characteristics of the flow discharge measurement process using the plate flowmeter were experimentally investigated. Buckingham's theorem of dimensional analysis was used to deduce the discharge relationships. For the top-hinged plates, the equilibrium condition is achieved when the closing moment (exerted by the plate weight) compensates with the opening moment. This portable device does not have previous problems (such as installation difficulties, changes in bed elevation, and sediment deposits upstream of the device), and its accuracy is acceptable (average error is less than 3.25%). It is also not heavy and thus can be used as a simple portable device; moreover, its application is not limited by the need for specialist expertise. The results of this study showed that the weight of the proposed plate flowmeter is sufficient for equilibrium conditions and this device does not require any additional counterweight as flap gates for flow discharge measurement. This portable device has no adjustable part (decision variable) and thus the plate can be used only for flow measurement and cannot be used as a water depth control device. The hinged plate used in this study has a single pivot point located at its top (Figure 1) and is more stable than the flap gate generally used for both discharge measurement and water depth control with an extra counterweight.
Figure 1

Definition sketches of a deflected plate located in a rectangular open channel under free flow condition.

Figure 1

Definition sketches of a deflected plate located in a rectangular open channel under free flow condition.

Close modal

Since low-sloping channels are widely used in irrigation and drainage networks, the main objective of this study is to obtain a simple generalized discharge relation for a top-hinged plate located along both horizontal and sloping rectangular, open channel under free-flow conditions. The proposed top-hinged plate can have different width ratio (plate width to channel width varies from 0.2 to 0.8) and thus help to reduce afflux compared to sluice gates. The advantages of the proposed portable device over the sluice gates and weirs are its simple construction, ease of flow discharge measurement, measuring a wider range of flow rates and its low costs.

The following sections present dimensional analysis method for deducing the discharge equation of a top-hinged rectangular plate along with experimental setup used in this research. Results and discussions including a step-by-step procedure to obtain suitable discharge equations are then presented followed by concluding remarks.

Dimensional analysis (deducing discharge relationship)

The plate flowmeter is a kind of measuring structure which its design criteria are developing and improving. The structure of the portable plate flowmeter simply consists of a Plexiglas sheet, a steel rod and some ring hook screws. The definition sketch of a top-hinged rectangular plate (longitudinal and front views) having the length L, thickness t and width b located in a rectangular open channel of width B is shown in Figure 1. In the figure, the important hydraulic and geometric parameters involved in the flow discharge are presented. The discharge relationship for a hinged rectangular plate can be expressed by the following functional relationship:
(1)

in which f1 is the functional symbol, Q is the flow discharge (m3/s), S is the channel longitudinal slope (m/m), h is the upstream water depth (m), g is the acceleration due to gravity (m/s2), M is the mass of the hinged plate without its axis (kg), θ is the angle of deflection (degree), μ is the water dynamic viscosity (Ns/m2), ρ is the water density (kg/m3) and σ is the water surface tension (N/m).

The increase in flow depth in the rectangular channel led to an increase in the deflection angle of the plate (Figure 1) and thus there is an interaction between upstream flow depth and the deflection angle. The deflection angle, θ, will be fixed when the closing moments are balanced by the opening moments (closing moments are equal to opening moments). The deflection angle of the plate can be considered as either an independent variable or a dependent variable [13]. If θ is obtained from experimental/field measurement data then this variable will be independent (Model I). In this case, the plate mass, M, is irrelevant and should not be considered as an effective variable in functional Equation (1). If θ is considered as a dependent variable (Model II), then this variable is influenced by the plate mass, M, and other variables expressed in Equation (1). In this case, θ should not be considered as an effective variable in Equation (1), and its effects are considered by other variables expressed in Equation (1). It is worth noting that the flow area under the plate [plate opening height is equal to P = 2Lsin2(θ/2)] is a function of L and θ, and is not an independent variable and thus should not be considered as an effective variable in Equation (1).

The Π-theorem allows the organization of experimental runs by dimensionless variables/groups. Equation (1) can be expressed in a dimensionless form as:
(2)
where ∏1, ∏2, ∏3, ∏4, ∏5, ∏6, ∏7, ∏8, ∏9, and ∏10 are dimensionless groups and f1 is a functional symbol.
Using B, g and ρ as repeating variables, the following ten dimensionless groups are obtained:
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

These original dimensionless variables can be combined to obtain new dimensionless variables.

Using Equations (4) and (5), the following dimensionless group can be obtained:
(13)
in which R stands for the Reynolds number.
Using Equations (3), (4) and (6) the following dimensionless group is obtained:
(14)
in which W stands for the Weber number.
Using Equations (7) and (11), the following dimensionless group is obtained:
(15)
Taking ∏1 as the dependent dimensionless variable, the functional relationship of a hinged plate can be rewritten as:
(16)
in which f2 is a functional symbol.

Roth & Hager (1999) experimentally observed that for small values of the sluice gate opening (1–2 cm), the surface tension dominates the flow. In this study, the gate opening is higher than 2 cm in most cases (82% of the observations) and thus the surface tension can be neglected. In this study, the Reynolds number [B(gh)0.5/ν in which ν is the kinematic water viscosity; ν = 10−6 m2/s] was in the range of 0.1 × 106 to 0.38 × 106 which indicates that the effect of viscosity can be neglected.

Neglecting the effects of the Weber number and the Reynolds number, Equation (16) takes the form:
(17)
in which ψ is a functional symbol. The configurations and experimental tests analyzed in this study cover a suitable range of these dimensionless variables.
Two models can be defined for discharge relation based on the Buckingham's theorem of dimensional analysis. For first model (Model I), θ is assumed to be an independent variable which should be determined by measurements. This model is expressed in the following functional form:
(18)
For second model (Model II), θ is assumed to be a dependent variable. This model is expressed in the following functional form:
(19)

In Equations (18) and (19), ψI and ψII are functional symbols. The mathematical shape of the functional relationships can be found using experimental data. In this study to verify the relation of flow discharge with the involved parameters, a comprehensive experimental program was performed.

Experimental setup

A series of experiments was conducted to investigate the flow discharge characteristics of top-hinged plates installed at the middle of a rectangular open channel (12 m long, 0.25 m wide, and 0.5 m deep) with two longitudinal slopes of 0 and 0.005. The experiments were performed at the hydraulic laboratory of the Irrigation and Reclamation Engineering Department, University of Tehran, Iran. The laboratory channel was supplied by a pump and was connected to an upstream supply through an inlet stilling/stabilizing part to eliminate water surface fluctuations. From a large constant head reservoir (upper tank), water was supplied to the rectangular channel entrance by a supply pipe equipped with a flow control valve. From the downstream end of the rectangular channel, water passed through a triangular weir and entered an underground reservoir and then it was pumped and recirculated using a pump to the constant head reservoir (upper tank). Within the flow circulation path, a rectangular weir was also installed and used for high discharge measurement. Both triangular and rectangular weirs were calibrated using an electromagnetic flowmeter with an accuracy of 0.5% of the full scale. The tests were carried out in a steady-state flow condition. During the experiments, a constant discharge was adjusted via the flow control valve, and excess water was discharged from the upper reservoir into the underground reservoir through a weir. The upstream gauge station should be far enough from the plate location to eliminate the water surface effects (backwater effects). Upstream flow depths were measured at the centreline of the approach channels using a point gauge with an accuracy of 0.1 mm which installed at a distance of 0.8 m upstream of the plates. The plates were made of Plexiglas sheets with two different thicknesses of t = 5 and 10 mm. The measurements were carried out for two different plate lengths (L = 20 and 30 cm) and four different values of the plate width (b = 5, 10, 15 and 20 cm). The plates were installed vertically in such a way that their lower edges were located in a distance of 5 mm from the channel bottom. All edges of the rectangular plates were cut in a right-angle and thus they acted as a sharp-crested measurement device during the operation. The plates were installed in a distance of 8 m from the channel inlet and flow was fully developed upstream of the plate.

Figure 2 shows the plates with different widths. A total number of eight plates were used for the experimental program. The plates were hinged at the top using some ring hook screws, as shown in Figure 3. Ring hook screws used in this study as the hinge are frictionless and any similar frictionless elements can be used instead in practice. A horizontal steel rod with a diameter of 5 mm was used as a pivot. The horizontal rod was perpendicular to the channel walls. The deflection angle, θ, between the vertical axis and the plates is measured using a protractor (Figure 3). The tailwater depth had no effect on the flow condition in all performed experiments. A total number of 687 runs (393 runs for S = 0, and 294 runs for S = 0.005) were performed. Under free flow condition, the flow discharge relationship is not affected by downstream flow depth and upstream flow depth and geometrical characteristics are sufficient to achieve flow discharge equation. The mass of the plates used in this research was ranging from 0.061 to 0.692 kg. The plates with four different widths (b = 5, 10, 15 and 20 cm) were placed inside the channel.
Figure 2

Different rectangular Plexiglas plates used in this study with different width, length and thickness.

Figure 2

Different rectangular Plexiglas plates used in this study with different width, length and thickness.

Close modal
Figure 3

Plates under experiment and their elements (a) front view (b) longitudinal view.

Figure 3

Plates under experiment and their elements (a) front view (b) longitudinal view.

Close modal

The downstream flow condition of the plate differs from that of traditional sluice gates, which usually produce a regular hydraulic jump for dissipating excess energy of the supercritical flow under the gate. This is due to adjustable plate opening P. There was a clear contracted flow under the plates in all experiments, which indicated free flow conditions. The water surface profile upstream of the plate was still without any fluctuation (Figure 3(b)). Moreover, the plate under operation was completely stable and thus accurate measurement of the deflection angle, θ, was possible for all experiments. For each free flow experiment, the flow discharge and the upstream flow depth were measured. The discharge used in the tests was ranging from 1 to 74 L/s. The deflection angle, θ, ranged from 3.5° to 81°, the flow depth ratio h/B ranged from 0.065 to 0.95 and the width ratio b/B ranged from 0.2 to 0.8. Tables 1 and 2 present the experimental data collected in this research, respectively, for S = 0 and S = 0.005 under free flow conditions.

Table 1

Experimental data collected in this study for top-hinged plates located at the middle of a horizontal rectangular open channel of width B = 0.25 cm

Test No.h (m)θ (degree)Q (m3/s)b (m)L (m)t (m)M (kg)Test No.h (m)θ (degree)Q (m3/s)b (m)L (m)t (m)M (kg)Test No.h (m)θ (degree)Q (m3/s)b (m)L (m)t (m)M (kg)
1 0.0221 4.0 0.00103 0.05 0.3 0.010 0.17815 132 0.1644 58.5 0.04450 0.05 0.3 0.005 0.08984 263 0.0484 22.0 0.00432 0.15 0.2 0.010 0.34907 
2 0.0237 5.0 0.00126 0.05 0.3 0.010 0.17815 133 0.1769 60.0 0.05109 0.05 0.3 0.005 0.08984 264 0.0553 25.5 0.00544 0.15 0.2 0.010 0.34907 
3 0.0305 6.5 0.00188 0.05 0.3 0.010 0.17815 134 0.1904 62.5 0.05531 0.05 0.3 0.005 0.08984 265 0.0615 27.5 0.00659 0.15 0.2 0.010 0.34907 
4 0.0370 10.0 0.00292 0.05 0.3 0.010 0.17815 135 0.1970 65.0 0.06090 0.05 0.3 0.005 0.08984 266 0.0727 32.0 0.00880 0.15 0.2 0.010 0.34907 
5 0.0406 13.5 0.00373 0.05 0.3 0.010 0.17815 136 0.2068 66.5 0.06735 0.05 0.3 0.005 0.08984 267 0.0775 34.5 0.01027 0.15 0.2 0.010 0.34907 
6 0.0459 16.5 0.00465 0.05 0.3 0.010 0.17815 137 0.2217 68.5 0.07201 0.05 0.3 0.005 0.08984 268 0.0841 36.5 0.01193 0.15 0.2 0.010 0.34907 
7 0.0520 20.0 0.00585 0.05 0.3 0.010 0.17815 138 0.0218 6.0 0.00103 0.10 0.3 0.005 0.18025 269 0.0901 40.5 0.01337 0.15 0.2 0.010 0.34907 
8 0.0575 23.5 0.00709 0.05 0.3 0.010 0.17815 139 0.0273 12.0 0.00173 0.10 0.3 0.005 0.18025 270 0.0973 43.5 0.01545 0.15 0.2 0.010 0.34907 
9 0.0648 25.0 0.00841 0.05 0.3 0.010 0.17815 140 0.0355 15.0 0.00274 0.10 0.3 0.005 0.18025 271 0.1035 46.0 0.01741 0.15 0.2 0.010 0.34907 
10 0.0711 28.5 0.00993 0.05 0.3 0.010 0.17815 141 0.0419 19.0 0.00369 0.10 0.3 0.005 0.18025 272 0.1098 48.0 0.01954 0.15 0.2 0.010 0.34907 
11 0.0781 31.0 0.01202 0.05 0.3 0.010 0.17815 142 0.0486 22.5 0.00483 0.10 0.3 0.005 0.18025 273 0.1138 50.5 0.02130 0.15 0.2 0.010 0.34907 
12 0.0861 33.5 0.01405 0.05 0.3 0.010 0.17815 143 0.0534 26.0 0.00587 0.10 0.3 0.005 0.18025 274 0.1251 53.5 0.02471 0.15 0.2 0.010 0.34907 
13 0.0928 37.0 0.01615 0.05 0.3 0.010 0.17815 144 0.0598 27.0 0.00705 0.10 0.3 0.005 0.18025 275 0.1508 63.0 0.03501 0.15 0.2 0.010 0.34907 
14 0.0982 39.0 0.01860 0.05 0.3 0.010 0.17815 145 0.0652 30.0 0.00834 0.10 0.3 0.005 0.18025 276 0.1639 67.5 0.04016 0.15 0.2 0.010 0.34907 
15 0.1065 41.5 0.02110 0.05 0.3 0.010 0.17815 146 0.0727 34.0 0.01023 0.10 0.3 0.005 0.18025 277 0.1742 72.0 0.04484 0.15 0.2 0.010 0.34907 
16 0.1136 43.0 0.02302 0.05 0.3 0.010 0.17815 147 0.0793 36.0 0.01190 0.10 0.3 0.005 0.18025 278 0.1862 75.5 0.05038 0.15 0.2 0.010 0.34907 
17 0.1178 45.0 0.02471 0.05 0.3 0.010 0.17815 148 0.0862 38.5 0.01422 0.10 0.3 0.005 0.18025 279 0.0377 17.0 0.00239 0.20 0.2 0.010 0.46814 
18 0.1395 48.5 0.03209 0.05 0.3 0.010 0.17815 149 0.0945 40.0 0.01624 0.10 0.3 0.005 0.18025 280 0.0471 21.0 0.00360 0.20 0.2 0.010 0.46814 
19 0.1460 51.5 0.03501 0.05 0.3 0.010 0.17815 150 0.1022 42.0 0.01845 0.10 0.3 0.005 0.18025 281 0.0555 26.5 0.00487 0.20 0.2 0.010 0.46814 
20 0.1564 54.0 0.03997 0.05 0.3 0.010 0.17815 151 0.1069 45.0 0.02031 0.10 0.3 0.005 0.18025 282 0.0658 30.5 0.00698 0.20 0.2 0.010 0.46814 
21 0.1670 56.5 0.04498 0.05 0.3 0.010 0.17815 152 0.1133 46.5 0.02235 0.10 0.3 0.005 0.18025 283 0.0729 35.0 0.00877 0.20 0.2 0.010 0.46814 
22 0.1760 58.0 0.04863 0.05 0.3 0.010 0.17815 153 0.1230 50.5 0.02619 0.10 0.3 0.005 0.18025 284 0.0777 38.0 0.00985 0.20 0.2 0.010 0.46814 
23 0.1852 60.0 0.05380 0.05 0.3 0.010 0.17815 154 0.1314 52.5 0.02948 0.10 0.3 0.005 0.18025 285 0.0892 41.5 0.01229 0.20 0.2 0.010 0.46814 
24 0.1897 61.5 0.05466 0.05 0.3 0.010 0.17815 155 0.1433 55.5 0.03401 0.10 0.3 0.005 0.18025 286 0.0957 46.0 0.01419 0.20 0.2 0.010 0.46814 
25 0.1946 62.5 0.05757 0.05 0.3 0.010 0.17815 156 0.1557 58.5 0.03944 0.10 0.3 0.005 0.18025 287 0.0997 46.0 0.01521 0.20 0.2 0.010 0.46814 
26 0.2001 65.0 0.06128 0.05 0.3 0.010 0.17815 157 0.1658 61.0 0.04417 0.10 0.3 0.005 0.18025 288 0.1053 49.0 0.01691 0.20 0.2 0.010 0.46814 
27 0.2163 67.0 0.06735 0.05 0.3 0.010 0.17815 158 0.1747 63.0 0.04828 0.10 0.3 0.005 0.18025 289 0.1107 50.5 0.01844 0.20 0.2 0.010 0.46814 
28 0.0218 4.5 0.00104 0.10 0.3 0.010 0.35253 159 0.1828 64.5 0.05180 0.10 0.3 0.005 0.18025 290 0.1148 52.5 0.02005 0.20 0.2 0.010 0.46814 
29 0.0269 5.0 0.00137 0.10 0.3 0.010 0.35253 160 0.1891 65.5 0.05531 0.10 0.3 0.005 0.18025 291 0.1305 58.0 0.02539 0.20 0.2 0.010 0.46814 
30 0.0341 8.5 0.00217 0.10 0.3 0.010 0.35253 161 0.2061 69.0 0.06053 0.10 0.3 0.005 0.18025 292 0.1339 59.0 0.02683 0.20 0.2 0.010 0.46814 
31 0.0402 12.0 0.00304 0.10 0.3 0.010 0.35253 162 0.2273 73.0 0.07123 0.10 0.3 0.005 0.18025 293 0.1404 62.0 0.02889 0.20 0.2 0.010 0.46814 
32 0.0458 15.0 0.00385 0.10 0.3 0.010 0.35253 163 0.0222 7.0 0.00103 0.15 0.3 0.005 0.26418 294 0.1488 65.5 0.03289 0.20 0.2 0.010 0.46814 
33 0.0504 18.0 0.00475 0.10 0.3 0.010 0.35253 164 0.0284 11.0 0.00169 0.15 0.3 0.005 0.26418 295 0.1545 67.0 0.03495 0.20 0.2 0.010 0.46814 
34 0.0564 21.5 0.00596 0.10 0.3 0.010 0.35253 165 0.0346 15.0 0.00244 0.15 0.3 0.005 0.26418 296 0.1619 70.0 0.03892 0.20 0.2 0.010 0.46814 
35 0.0613 24.0 0.00697 0.10 0.3 0.010 0.35253 166 0.0404 18.0 0.00338 0.15 0.3 0.005 0.26418 297 0.1707 72.5 0.04215 0.20 0.2 0.010 0.46814 
36 0.0675 25.5 0.00806 0.10 0.3 0.010 0.35253 167 0.0486 20.5 0.00449 0.15 0.3 0.005 0.26418 298 0.1747 75.0 0.04553 0.20 0.2 0.010 0.46814 
37 0.0723 27.0 0.00930 0.10 0.3 0.010 0.35253 168 0.0565 24.0 0.00610 0.15 0.3 0.005 0.26418 299 0.1857 77.0 0.04863 0.20 0.2 0.010 0.46814 
38 0.0771 30.0 0.01076 0.10 0.3 0.010 0.35253 169 0.0649 27.5 0.00795 0.15 0.3 0.005 0.26418 300 0.0198 6.0 0.00103 0.05 0.2 0.005 0.06140 
39 0.0832 32.0 0.01235 0.10 0.3 0.010 0.35253 170 0.0739 30.0 0.01016 0.15 0.3 0.005 0.26418 301 0.0215 9.0 0.00127 0.05 0.2 0.005 0.06140 
40 0.0902 34.5 0.01422 0.10 0.3 0.010 0.35253 171 0.0820 33.0 0.01234 0.15 0.3 0.005 0.26418 302 0.0273 10.0 0.00184 0.05 0.2 0.005 0.06140 
41 0.0971 36.5 0.01612 0.10 0.3 0.010 0.35253 172 0.0919 36.5 0.01486 0.15 0.3 0.005 0.26418 303 0.0302 15.0 0.00230 0.05 0.2 0.005 0.06140 
42 0.1057 38.0 0.01856 0.10 0.3 0.010 0.35253 173 0.1018 39.5 0.01791 0.15 0.3 0.005 0.26418 304 0.0363 18.0 0.00317 0.05 0.2 0.005 0.06140 
43 0.1130 41.5 0.02085 0.10 0.3 0.010 0.35253 174 0.1083 41.5 0.02021 0.15 0.3 0.005 0.26418 305 0.0388 22.0 0.00365 0.05 0.2 0.005 0.06140 
44 0.1185 43.5 0.02292 0.10 0.3 0.010 0.35253 175 0.1173 44.0 0.02223 0.15 0.3 0.005 0.26418 306 0.0439 25.0 0.00467 0.05 0.2 0.005 0.06140 
45 0.1250 46.0 0.02573 0.10 0.3 0.010 0.35253 176 0.1283 47.0 0.02701 0.15 0.3 0.005 0.26418 307 0.0482 28.5 0.00554 0.05 0.2 0.005 0.06140 
46 0.1315 48.0 0.02830 0.10 0.3 0.010 0.35253 177 0.1353 49.0 0.02889 0.15 0.3 0.005 0.26418 308 0.0527 30.0 0.00631 0.05 0.2 0.005 0.06140 
47 0.1377 49.5 0.02978 0.10 0.3 0.010 0.35253 178 0.1456 51.5 0.03234 0.15 0.3 0.005 0.26418 309 0.0586 33.0 0.00756 0.05 0.2 0.005 0.06140 
48 0.1456 51.5 0.03320 0.10 0.3 0.010 0.35253 179 0.1509 53.5 0.03527 0.15 0.3 0.005 0.26418 310 0.0651 36.5 0.00953 0.05 0.2 0.005 0.06140 
49 0.1508 53.5 0.03546 0.10 0.3 0.010 0.35253 180 0.1602 55.5 0.03918 0.15 0.3 0.005 0.26418 311 0.0731 40.0 0.01175 0.05 0.2 0.005 0.06140 
50 0.1555 54.5 0.03647 0.10 0.3 0.010 0.35253 181 0.1692 58.0 0.04282 0.15 0.3 0.005 0.26418 312 0.0812 43.0 0.01386 0.05 0.2 0.005 0.06140 
51 0.1628 57.0 0.03977 0.10 0.3 0.010 0.35253 182 0.1767 59.5 0.04642 0.15 0.3 0.005 0.26418 313 0.0892 47.5 0.01651 0.05 0.2 0.005 0.06140 
52 0.1702 58.5 0.04349 0.10 0.3 0.010 0.35253 183 0.1849 61.5 0.05038 0.15 0.3 0.005 0.26418 314 0.0972 52.0 0.01911 0.05 0.2 0.005 0.06140 
53 0.1779 60.0 0.04655 0.10 0.3 0.010 0.35253 184 0.1912 62.5 0.05358 0.15 0.3 0.005 0.26418 315 0.1051 53.0 0.02188 0.05 0.2 0.005 0.06140 
54 0.1827 61.5 0.04919 0.10 0.3 0.010 0.35253 185 0.1966 64.0 0.05611 0.15 0.3 0.005 0.26418 316 0.1151 56.5 0.02654 0.05 0.2 0.005 0.06140 
55 0.1868 62.5 0.05109 0.10 0.3 0.010 0.35253 186 0.2017 65.5 0.05919 0.15 0.3 0.005 0.26418 317 0.1198 61.5 0.02859 0.05 0.2 0.005 0.06140 
56 0.1973 64.0 0.05611 0.10 0.3 0.010 0.35253 187 0.2129 68.5 0.06399 0.15 0.3 0.005 0.26418 318 0.1293 63.0 0.03314 0.05 0.2 0.005 0.06140 
57 0.2011 65.5 0.05794 0.10 0.3 0.010 0.35253 188 0.2361 72.5 0.07438 0.15 0.3 0.005 0.26418 319 0.1389 65.5 0.03692 0.05 0.2 0.005 0.06140 
58 0.0351 11.5 0.00226 0.15 0.3 0.010 0.52030 189 0.0234 7.0 0.00105 0.20 0.3 0.005 0.36361 320 0.1472 68.0 0.03951 0.05 0.2 0.005 0.06140 
59 0.0412 14.0 0.00309 0.15 0.3 0.010 0.52030 190 0.0295 11.5 0.00170 0.20 0.3 0.005 0.36361 321 0.1515 70.0 0.04215 0.05 0.2 0.005 0.06140 
60 0.0473 16.5 0.00401 0.15 0.3 0.010 0.52030 191 0.0350 14.0 0.00234 0.20 0.3 0.005 0.36361 322 0.1581 72.5 0.04444 0.05 0.2 0.005 0.06140 
61 0.0524 18.5 0.00485 0.15 0.3 0.010 0.52030 192 0.0408 18.5 0.00329 0.20 0.3 0.005 0.36361 323 0.1655 75.0 0.04759 0.05 0.2 0.005 0.06140 
62 0.0582 21.5 0.00596 0.15 0.3 0.010 0.52030 193 0.0498 20.5 0.00457 0.20 0.3 0.005 0.36361 324 0.1715 78.0 0.05144 0.05 0.2 0.005 0.06140 
63 0.0621 25.0 0.00757 0.15 0.3 0.010 0.52030 194 0.0582 23.5 0.00603 0.20 0.3 0.005 0.36361 325 0.0208 8.5 0.00103 0.10 0.2 0.005 0.11703 
64 0.0724 27.5 0.00884 0.15 0.3 0.010 0.52030 195 0.0668 26.0 0.00760 0.20 0.3 0.005 0.36361 326 0.0232 11.0 0.00128 0.10 0.2 0.005 0.11703 
65 0.0785 29.5 0.01030 0.15 0.3 0.010 0.52030 196 0.0736 30.0 0.00925 0.20 0.3 0.005 0.36361 327 0.0264 13.0 0.00161 0.10 0.2 0.005 0.11703 
66 0.0852 31.0 0.01193 0.15 0.3 0.010 0.52030 197 0.0816 31.5 0.01115 0.20 0.3 0.005 0.36361 328 0.0304 15.5 0.00217 0.10 0.2 0.005 0.11703 
67 0.0886 33.0 0.01267 0.15 0.3 0.010 0.52030 198 0.0893 34.0 0.01318 0.20 0.3 0.005 0.36361 329 0.0349 20.0 0.00282 0.10 0.2 0.005 0.11703 
68 0.0933 34.0 0.01392 0.15 0.3 0.010 0.52030 199 0.0978 37.0 0.01567 0.20 0.3 0.005 0.36361 330 0.0383 22.0 0.00341 0.10 0.2 0.005 0.11703 
69 0.0986 35.0 0.01483 0.15 0.3 0.010 0.52030 200 0.1058 39.5 0.01807 0.20 0.3 0.005 0.36361 331 0.0459 25.5 0.00433 0.10 0.2 0.005 0.11703 
70 0.1047 37.5 0.01697 0.15 0.3 0.010 0.52030 201 0.1153 43.0 0.02102 0.20 0.3 0.005 0.36361 332 0.0492 28.5 0.00526 0.10 0.2 0.005 0.11703 
71 0.1108 38.5 0.01911 0.15 0.3 0.010 0.52030 202 0.1269 45.0 0.02460 0.20 0.3 0.005 0.36361 333 0.0559 31.5 0.00637 0.10 0.2 0.005 0.11703 
72 0.1165 41.5 0.02097 0.15 0.3 0.010 0.52030 203 0.1322 47.0 0.02654 0.20 0.3 0.005 0.36361 334 0.0600 33.5 0.00738 0.10 0.2 0.005 0.11703 
73 0.1243 43.0 0.02315 0.15 0.3 0.010 0.52030 204 0.1423 49.5 0.03099 0.20 0.3 0.005 0.36361 335 0.0652 36.0 0.00860 0.10 0.2 0.005 0.11703 
74 0.1323 45.5 0.02643 0.15 0.3 0.010 0.52030 205 0.1514 52.5 0.03501 0.20 0.3 0.005 0.36361 336 0.0717 38.0 0.00976 0.10 0.2 0.005 0.11703 
75 0.1411 47.5 0.02990 0.15 0.3 0.010 0.52030 206 0.1578 54.0 0.03698 0.20 0.3 0.005 0.36361 337 0.0771 40.5 0.01157 0.10 0.2 0.005 0.11703 
76 0.1491 49.5 0.03295 0.15 0.3 0.010 0.52030 207 0.1678 56.5 0.04168 0.20 0.3 0.005 0.36361 338 0.0810 43.0 0.01285 0.10 0.2 0.005 0.11703 
77 0.1551 52.0 0.03520 0.15 0.3 0.010 0.52030 208 0.1761 58.5 0.04450 0.20 0.3 0.005 0.36361 339 0.0900 46.0 0.01514 0.10 0.2 0.005 0.11703 
78 0.1659 54.0 0.03866 0.15 0.3 0.010 0.52030 209 0.1830 60.0 0.04793 0.20 0.3 0.005 0.36361 340 0.0974 49.0 0.01759 0.10 0.2 0.005 0.11703 
79 0.1728 57.5 0.04269 0.15 0.3 0.010 0.52030 210 0.1915 62.0 0.05194 0.20 0.3 0.005 0.36361 341 0.1063 52.5 0.02029 0.10 0.2 0.005 0.11703 
80 0.1785 59.0 0.04566 0.15 0.3 0.010 0.52030 211 0.1975 63.5 0.05466 0.20 0.3 0.005 0.36361 342 0.1117 55.0 0.02256 0.10 0.2 0.005 0.11703 
81 0.1908 61.0 0.05123 0.15 0.3 0.010 0.52030 212 0.2037 64.5 0.05801 0.20 0.3 0.005 0.36361 343 0.1223 59.0 0.02724 0.10 0.2 0.005 0.11703 
82 0.2145 64.0 0.05942 0.15 0.3 0.010 0.52030 213 0.2157 67.5 0.06353 0.20 0.3 0.005 0.36361 344 0.1282 62.0 0.02954 0.10 0.2 0.005 0.11703 
83 0.2188 68.5 0.06452 0.15 0.3 0.010 0.52030 214 0.2324 70.5 0.07201 0.20 0.3 0.005 0.36361 345 0.1381 65.0 0.03345 0.10 0.2 0.005 0.11703 
84 0.2351 71.5 0.07201 0.15 0.3 0.010 0.52030 215 0.0213 5.5 0.00103 0.05 0.2 0.010 0.12177 346 0.1459 67.5 0.03692 0.10 0.2 0.005 0.11703 
85 0.0245 5.5 0.00106 0.20 0.3 0.010 0.69174 216 0.0251 9.0 0.00147 0.05 0.2 0.010 0.12177 347 0.1591 72.5 0.04349 0.10 0.2 0.005 0.11703 
86 0.0335 9.0 0.00193 0.20 0.3 0.010 0.69174 217 0.0307 13.0 0.00215 0.05 0.2 0.010 0.12177 348 0.1685 75.5 0.04759 0.10 0.2 0.005 0.11703 
87 0.0421 13.0 0.00295 0.20 0.3 0.010 0.69174 218 0.0366 16.0 0.00294 0.05 0.2 0.010 0.12177 349 0.0210 10.0 0.00103 0.15 0.2 0.005 0.18139 
88 0.0482 16.5 0.00374 0.20 0.3 0.010 0.69174 219 0.0410 19.5 0.00376 0.05 0.2 0.010 0.12177 350 0.0244 11.0 0.00131 0.15 0.2 0.005 0.18139 
89 0.0546 19.0 0.00483 0.20 0.3 0.010 0.69174 220 0.0473 23.0 0.00480 0.05 0.2 0.010 0.12177 351 0.0291 16.0 0.00188 0.15 0.2 0.005 0.18139 
90 0.0623 21.0 0.00609 0.20 0.3 0.010 0.69174 221 0.0537 28.5 0.00622 0.05 0.2 0.010 0.12177 352 0.0345 19.0 0.00254 0.15 0.2 0.005 0.18139 
91 0.0711 25.0 0.00774 0.20 0.3 0.010 0.69174 222 0.0606 32.5 0.00774 0.05 0.2 0.010 0.12177 353 0.0414 21.0 0.00349 0.15 0.2 0.005 0.18139 
92 0.0785 27.5 0.00931 0.20 0.3 0.010 0.69174 223 0.0677 36.0 0.00927 0.05 0.2 0.010 0.12177 354 0.0487 25.0 0.00477 0.15 0.2 0.005 0.18139 
93 0.0863 31.5 0.01114 0.20 0.3 0.010 0.69174 224 0.0747 40.0 0.01109 0.05 0.2 0.010 0.12177 355 0.0553 28.0 0.00597 0.15 0.2 0.005 0.18139 
94 0.0921 33.0 0.01248 0.20 0.3 0.010 0.69174 225 0.0812 43.0 0.01297 0.05 0.2 0.010 0.12177 356 0.0630 32.5 0.00759 0.15 0.2 0.005 0.18139 
95 0.1007 34.5 0.01433 0.20 0.3 0.010 0.69174 226 0.0908 47.0 0.01589 0.05 0.2 0.010 0.12177 357 0.0696 35.0 0.00906 0.15 0.2 0.005 0.18139 
96 0.1076 36.5 0.01631 0.20 0.3 0.010 0.69174 227 0.1006 51.5 0.01874 0.05 0.2 0.010 0.12177 358 0.0779 39.0 0.01117 0.15 0.2 0.005 0.18139 
97 0.1158 38.5 0.01854 0.20 0.3 0.010 0.69174 228 0.1078 54.0 0.02136 0.05 0.2 0.010 0.12177 359 0.0862 42.5 0.01358 0.15 0.2 0.005 0.18139 
98 0.1245 40.5 0.02097 0.20 0.3 0.010 0.69174 229 0.1173 57.0 0.02511 0.05 0.2 0.010 0.12177 360 0.0946 47.0 0.01662 0.15 0.2 0.005 0.18139 
99 0.1291 42.0 0.02292 0.20 0.3 0.010 0.69174 230 0.1240 60.0 0.02724 0.05 0.2 0.010 0.12177 361 0.1045 51.0 0.01944 0.15 0.2 0.005 0.18139 
100 0.1356 46.0 0.02579 0.20 0.3 0.010 0.69174 231 0.1294 62.0 0.02948 0.05 0.2 0.010 0.12177 362 0.1123 54.0 0.02263 0.15 0.2 0.005 0.18139 
101 0.1480 48.0 0.03033 0.20 0.3 0.010 0.69174 232 0.1376 65.0 0.03314 0.05 0.2 0.010 0.12177 363 0.1209 58.0 0.02482 0.15 0.2 0.005 0.18139 
102 0.1533 50.0 0.03240 0.20 0.3 0.010 0.69174 233 0.1487 68.5 0.03756 0.05 0.2 0.010 0.12177 364 0.1279 60.0 0.02771 0.15 0.2 0.005 0.18139 
103 0.1639 52.5 0.03615 0.20 0.3 0.010 0.69174 234 0.1528 69.5 0.04023 0.05 0.2 0.010 0.12177 365 0.1399 65.0 0.03252 0.15 0.2 0.005 0.18139 
104 0.1691 54.0 0.03808 0.20 0.3 0.010 0.69174 235 0.1594 70.5 0.04342 0.05 0.2 0.010 0.12177 366 0.1482 68.0 0.03628 0.15 0.2 0.005 0.18139 
105 0.1771 56.5 0.04182 0.20 0.3 0.010 0.69174 236 0.1755 76.0 0.05144 0.05 0.2 0.010 0.12177 367 0.1567 70.5 0.04016 0.15 0.2 0.005 0.18139 
106 0.1866 58.0 0.04587 0.20 0.3 0.010 0.69174 237 0.1834 79.0 0.05531 0.05 0.2 0.010 0.12177 368 0.1609 72.0 0.04471 0.15 0.2 0.005 0.18139 
107 0.1898 59.0 0.04759 0.20 0.3 0.010 0.69174 238 0.0222 6.0 0.00103 0.10 0.2 0.010 0.23534 369 0.1668 74.5 0.04553 0.15 0.2 0.005 0.18139 
108 0.2009 61.5 0.05215 0.20 0.3 0.010 0.69174 239 0.0256 9.5 0.00143 0.10 0.2 0.010 0.23534 370 0.1737 75.5 0.04933 0.15 0.2 0.005 0.18139 
109 0.2056 63.0 0.05394 0.20 0.3 0.010 0.69174 240 0.0307 13.0 0.00201 0.10 0.2 0.010 0.23534 371 0.0214 11.5 0.00103 0.20 0.2 0.005 0.23141 
110 0.2180 66.0 0.05927 0.20 0.3 0.010 0.69174 241 0.0364 17.5 0.00278 0.10 0.2 0.010 0.23534 372 0.0258 12.0 0.00134 0.20 0.2 0.005 0.23141 
111 0.2308 69.0 0.06620 0.20 0.3 0.010 0.69174 242 0.0437 21.0 0.00374 0.10 0.2 0.010 0.23534 373 0.0297 16.0 0.00188 0.20 0.2 0.005 0.23141 
112 0.2377 71.0 0.07201 0.20 0.3 0.010 0.69174 243 0.0495 25.0 0.00493 0.10 0.2 0.010 0.23534 374 0.0350 19.0 0.00252 0.20 0.2 0.005 0.23141 
113 0.0202 6.0 0.00103 0.05 0.3 0.005 0.08984 244 0.0580 27.5 0.00616 0.10 0.2 0.010 0.23534 375 0.0391 21.0 0.00305 0.20 0.2 0.005 0.23141 
114 0.0249 8.0 0.00154 0.05 0.3 0.005 0.08984 245 0.0656 31.5 0.00790 0.10 0.2 0.010 0.23534 376 0.0469 26.0 0.00428 0.20 0.2 0.005 0.23141 
115 0.0320 13.5 0.00251 0.05 0.3 0.005 0.08984 246 0.0724 35.0 0.00979 0.10 0.2 0.010 0.23534 377 0.0543 28.5 0.00557 0.20 0.2 0.005 0.23141 
116 0.0378 16.0 0.00337 0.05 0.3 0.005 0.08984 247 0.0888 42.5 0.01410 0.10 0.2 0.010 0.23534 378 0.0609 33.0 0.00696 0.20 0.2 0.005 0.23141 
117 0.0435 20.0 0.00442 0.05 0.3 0.005 0.08984 248 0.1016 47.5 0.01776 0.10 0.2 0.010 0.23534 379 0.0681 36.0 0.00850 0.20 0.2 0.005 0.23141 
118 0.0504 22.5 0.00580 0.05 0.3 0.005 0.08984 249 0.1097 51.0 0.02072 0.10 0.2 0.010 0.23534 380 0.0726 38.5 0.00974 0.20 0.2 0.005 0.23141 
119 0.0566 25.0 0.00697 0.05 0.3 0.005 0.08984 250 0.1190 54.5 0.02370 0.10 0.2 0.010 0.23534 381 0.0831 42.5 0.01210 0.20 0.2 0.005 0.23141 
120 0.0624 27.5 0.00841 0.05 0.3 0.005 0.08984 251 0.1265 58.0 0.02730 0.10 0.2 0.010 0.23534 382 0.0900 46.0 0.01448 0.20 0.2 0.005 0.23141 
121 0.0682 30.0 0.01020 0.05 0.3 0.005 0.08984 252 0.1336 60.5 0.02990 0.10 0.2 0.010 0.23534 383 0.0975 49.0 0.01680 0.20 0.2 0.005 0.23141 
122 0.0751 32.0 0.01195 0.05 0.3 0.005 0.08984 253 0.1447 64.5 0.03482 0.10 0.2 0.010 0.23534 384 0.1060 52.5 0.01928 0.20 0.2 0.005 0.23141 
123 0.0823 35.0 0.01379 0.05 0.3 0.005 0.08984 254 0.1532 68.0 0.03840 0.10 0.2 0.010 0.23534 385 0.1154 55.5 0.02231 0.20 0.2 0.005 0.23141 
124 0.0897 36.5 0.01566 0.05 0.3 0.005 0.08984 255 0.1625 70.0 0.04142 0.10 0.2 0.010 0.23534 386 0.1256 60.0 0.02539 0.20 0.2 0.005 0.23141 
125 0.0966 37.0 0.01772 0.05 0.3 0.005 0.08984 256 0.1702 73.5 0.04587 0.10 0.2 0.010 0.23534 387 0.1364 64.0 0.03008 0.20 0.2 0.005 0.23141 
126 0.1048 41.0 0.02059 0.05 0.3 0.005 0.08984 257 0.1828 76.5 0.05038 0.10 0.2 0.010 0.23534 388 0.1479 68.0 0.03426 0.20 0.2 0.005 0.23141 
127 0.1111 43.0 0.02334 0.05 0.3 0.005 0.08984 258 0.0224 7.5 0.00103 0.15 0.2 0.010 0.34907 389 0.1536 70.5 0.03788 0.20 0.2 0.005 0.23141 
128 0.1182 47.0 0.02654 0.05 0.3 0.005 0.08984 259 0.0264 11.5 0.00142 0.15 0.2 0.010 0.34907 390 0.1585 72.5 0.03977 0.20 0.2 0.005 0.23141 
129 0.1337 51.5 0.03221 0.05 0.3 0.005 0.08984 260 0.0322 13.5 0.00203 0.15 0.2 0.010 0.34907 391 0.1647 74.5 0.04282 0.20 0.2 0.005 0.23141 
130 0.1488 55.0 0.03866 0.05 0.3 0.005 0.08984 261 0.0367 17.5 0.00262 0.15 0.2 0.010 0.34907 392 0.1735 77.0 0.04690 0.20 0.2 0.005 0.23141 
131 0.1571 58.0 0.04155 0.05 0.3 0.005 0.08984 262 0.0434 19.0 0.00350 0.15 0.2 0.010 0.34907 393 0.1816 81.0 0.05180 0.20 0.2 0.005 0.23141 
Test No.h (m)θ (degree)Q (m3/s)b (m)L (m)t (m)M (kg)Test No.h (m)θ (degree)Q (m3/s)b (m)L (m)t (m)M (kg)Test No.h (m)θ (degree)Q (m3/s)b (m)L (m)t (m)M (kg)
1 0.0221 4.0 0.00103 0.05 0.3 0.010 0.17815 132 0.1644 58.5 0.04450 0.05 0.3 0.005 0.08984 263 0.0484 22.0 0.00432 0.15 0.2 0.010 0.34907 
2 0.0237 5.0 0.00126 0.05 0.3 0.010 0.17815 133 0.1769 60.0 0.05109 0.05 0.3 0.005 0.08984 264 0.0553 25.5 0.00544 0.15 0.2 0.010 0.34907 
3 0.0305 6.5 0.00188 0.05 0.3 0.010 0.17815 134 0.1904 62.5 0.05531 0.05 0.3 0.005 0.08984 265 0.0615 27.5 0.00659 0.15 0.2 0.010 0.34907 
4 0.0370 10.0 0.00292 0.05 0.3 0.010 0.17815 135 0.1970 65.0 0.06090 0.05 0.3 0.005 0.08984 266 0.0727 32.0 0.00880 0.15 0.2 0.010 0.34907 
5 0.0406 13.5 0.00373 0.05 0.3 0.010 0.17815 136 0.2068 66.5 0.06735 0.05 0.3 0.005 0.08984 267 0.0775 34.5 0.01027 0.15 0.2 0.010 0.34907 
6 0.0459 16.5 0.00465 0.05 0.3 0.010 0.17815 137 0.2217 68.5 0.07201 0.05 0.3 0.005 0.08984 268 0.0841 36.5 0.01193 0.15 0.2 0.010 0.34907 
7 0.0520 20.0 0.00585 0.05 0.3 0.010 0.17815 138 0.0218 6.0 0.00103 0.10 0.3 0.005 0.18025 269 0.0901 40.5 0.01337 0.15 0.2 0.010 0.34907 
8 0.0575 23.5 0.00709 0.05 0.3 0.010 0.17815 139 0.0273 12.0 0.00173 0.10 0.3 0.005 0.18025 270 0.0973 43.5 0.01545 0.15 0.2 0.010 0.34907 
9 0.0648 25.0 0.00841 0.05 0.3 0.010 0.17815 140 0.0355 15.0 0.00274 0.10 0.3 0.005 0.18025 271 0.1035 46.0 0.01741 0.15 0.2 0.010 0.34907 
10 0.0711 28.5 0.00993 0.05 0.3 0.010 0.17815 141 0.0419 19.0 0.00369 0.10 0.3 0.005 0.18025 272 0.1098 48.0 0.01954 0.15 0.2 0.010 0.34907 
11 0.0781 31.0 0.01202 0.05 0.3 0.010 0.17815 142 0.0486 22.5 0.00483 0.10 0.3 0.005 0.18025 273 0.1138 50.5 0.02130 0.15 0.2 0.010 0.34907 
12 0.0861 33.5 0.01405 0.05 0.3 0.010 0.17815 143 0.0534 26.0 0.00587 0.10 0.3 0.005 0.18025 274 0.1251 53.5 0.02471 0.15 0.2 0.010 0.34907 
13 0.0928 37.0 0.01615 0.05 0.3 0.010 0.17815 144 0.0598 27.0 0.00705 0.10 0.3 0.005 0.18025 275 0.1508 63.0 0.03501 0.15 0.2 0.010 0.34907 
14 0.0982 39.0 0.01860 0.05 0.3 0.010 0.17815 145 0.0652 30.0 0.00834 0.10 0.3 0.005 0.18025 276 0.1639 67.5 0.04016 0.15 0.2 0.010 0.34907 
15 0.1065 41.5 0.02110 0.05 0.3 0.010 0.17815 146 0.0727 34.0 0.01023 0.10 0.3 0.005 0.18025 277 0.1742 72.0 0.04484 0.15 0.2 0.010 0.34907 
16 0.1136 43.0 0.02302 0.05 0.3 0.010 0.17815 147 0.0793 36.0 0.01190 0.10 0.3 0.005 0.18025 278 0.1862 75.5 0.05038 0.15 0.2 0.010 0.34907 
17 0.1178 45.0 0.02471 0.05 0.3 0.010 0.17815 148 0.0862 38.5 0.01422 0.10 0.3 0.005 0.18025 279 0.0377 17.0 0.00239 0.20 0.2 0.010 0.46814 
18 0.1395 48.5 0.03209 0.05 0.3 0.010 0.17815 149 0.0945 40.0 0.01624 0.10 0.3 0.005 0.18025 280 0.0471 21.0 0.00360 0.20 0.2 0.010 0.46814 
19 0.1460 51.5 0.03501 0.05 0.3 0.010 0.17815 150 0.1022 42.0 0.01845 0.10 0.3 0.005 0.18025 281 0.0555 26.5 0.00487 0.20 0.2 0.010 0.46814 
20 0.1564 54.0 0.03997 0.05 0.3 0.010 0.17815 151 0.1069 45.0 0.02031 0.10 0.3 0.005 0.18025 282 0.0658 30.5 0.00698 0.20 0.2 0.010 0.46814 
21 0.1670 56.5 0.04498 0.05 0.3 0.010 0.17815 152 0.1133 46.5 0.02235 0.10 0.3 0.005 0.18025 283 0.0729 35.0 0.00877 0.20 0.2 0.010 0.46814 
22 0.1760 58.0 0.04863 0.05 0.3 0.010 0.17815 153 0.1230 50.5 0.02619 0.10 0.3 0.005 0.18025 284 0.0777 38.0 0.00985 0.20 0.2 0.010 0.46814 
23 0.1852 60.0 0.05380 0.05 0.3 0.010 0.17815 154 0.1314 52.5 0.02948 0.10 0.3 0.005 0.18025 285 0.0892 41.5 0.01229 0.20 0.2 0.010 0.46814 
24 0.1897 61.5 0.05466 0.05 0.3 0.010 0.17815 155 0.1433 55.5 0.03401 0.10 0.3 0.005 0.18025 286 0.0957 46.0 0.01419 0.20 0.2 0.010 0.46814 
25 0.1946 62.5 0.05757 0.05 0.3 0.010 0.17815 156 0.1557 58.5 0.03944 0.10 0.3 0.005 0.18025 287 0.0997 46.0 0.01521 0.20 0.2 0.010 0.46814 
26 0.2001 65.0 0.06128 0.05 0.3 0.010 0.17815 157 0.1658 61.0 0.04417 0.10 0.3 0.005 0.18025 288 0.1053 49.0 0.01691 0.20 0.2 0.010 0.46814 
27 0.2163 67.0 0.06735 0.05 0.3 0.010 0.17815 158 0.1747 63.0 0.04828 0.10 0.3 0.005 0.18025 289 0.1107 50.5 0.01844 0.20 0.2 0.010 0.46814 
28 0.0218 4.5 0.00104 0.10 0.3 0.010 0.35253 159 0.1828 64.5 0.05180 0.10 0.3 0.005 0.18025 290 0.1148 52.5 0.02005 0.20 0.2 0.010 0.46814 
29 0.0269 5.0 0.00137 0.10 0.3 0.010 0.35253 160 0.1891 65.5 0.05531 0.10 0.3 0.005 0.18025 291 0.1305 58.0 0.02539 0.20 0.2 0.010 0.46814 
30 0.0341 8.5 0.00217 0.10 0.3 0.010 0.35253 161 0.2061 69.0 0.06053 0.10 0.3 0.005 0.18025 292 0.1339 59.0 0.02683 0.20 0.2 0.010 0.46814 
31 0.0402 12.0 0.00304 0.10 0.3 0.010 0.35253 162 0.2273 73.0 0.07123 0.10 0.3 0.005 0.18025 293 0.1404 62.0 0.02889 0.20 0.2 0.010 0.46814 
32 0.0458 15.0 0.00385 0.10 0.3 0.010 0.35253 163 0.0222 7.0 0.00103 0.15 0.3 0.005 0.26418 294 0.1488 65.5 0.03289 0.20 0.2 0.010 0.46814 
33 0.0504 18.0 0.00475 0.10 0.3 0.010 0.35253 164 0.0284 11.0 0.00169 0.15 0.3 0.005 0.26418 295 0.1545 67.0 0.03495 0.20 0.2 0.010 0.46814 
34 0.0564 21.5 0.00596 0.10 0.3 0.010 0.35253 165 0.0346 15.0 0.00244 0.15 0.3 0.005 0.26418 296 0.1619 70.0 0.03892 0.20 0.2 0.010 0.46814 
35 0.0613 24.0 0.00697 0.10 0.3 0.010 0.35253 166 0.0404 18.0 0.00338 0.15 0.3 0.005 0.26418 297 0.1707 72.5 0.04215 0.20 0.2 0.010 0.46814 
36 0.0675 25.5 0.00806 0.10 0.3 0.010 0.35253 167 0.0486 20.5 0.00449 0.15 0.3 0.005 0.26418 298 0.1747 75.0 0.04553 0.20 0.2 0.010 0.46814 
37 0.0723 27.0 0.00930 0.10 0.3 0.010 0.35253 168 0.0565 24.0 0.00610 0.15 0.3 0.005 0.26418 299 0.1857 77.0 0.04863 0.20 0.2 0.010 0.46814 
38 0.0771 30.0 0.01076 0.10 0.3 0.010 0.35253 169 0.0649 27.5 0.00795 0.15 0.3 0.005 0.26418 300 0.0198 6.0 0.00103 0.05 0.2 0.005 0.06140 
39 0.0832 32.0 0.01235 0.10 0.3 0.010 0.35253 170 0.0739 30.0 0.01016 0.15 0.3 0.005 0.26418 301 0.0215 9.0 0.00127 0.05 0.2 0.005 0.06140 
40 0.0902 34.5 0.01422 0.10 0.3 0.010 0.35253 171 0.0820 33.0 0.01234 0.15 0.3 0.005 0.26418 302 0.0273 10.0 0.00184 0.05 0.2 0.005 0.06140 
41 0.0971 36.5 0.01612 0.10 0.3 0.010 0.35253 172 0.0919 36.5 0.01486 0.15 0.3 0.005 0.26418 303 0.0302 15.0 0.00230 0.05 0.2 0.005 0.06140 
42 0.1057 38.0 0.01856 0.10 0.3 0.010 0.35253 173 0.1018 39.5 0.01791 0.15 0.3 0.005 0.26418 304 0.0363 18.0 0.00317 0.05 0.2 0.005 0.06140 
43 0.1130 41.5 0.02085 0.10 0.3 0.010 0.35253 174 0.1083 41.5 0.02021 0.15 0.3 0.005 0.26418 305 0.0388 22.0 0.00365 0.05 0.2 0.005 0.06140 
44 0.1185 43.5 0.02292 0.10 0.3 0.010 0.35253 175 0.1173 44.0 0.02223 0.15 0.3 0.005 0.26418 306 0.0439 25.0 0.00467 0.05 0.2 0.005 0.06140 
45 0.1250 46.0 0.02573 0.10 0.3 0.010 0.35253 176 0.1283 47.0 0.02701 0.15 0.3 0.005 0.26418 307 0.0482 28.5 0.00554 0.05 0.2 0.005 0.06140 
46 0.1315 48.0 0.02830 0.10 0.3 0.010 0.35253 177 0.1353 49.0 0.02889 0.15 0.3 0.005 0.26418 308 0.0527 30.0 0.00631 0.05 0.2 0.005 0.06140 
47 0.1377 49.5 0.02978 0.10 0.3 0.010 0.35253 178 0.1456 51.5 0.03234 0.15 0.3 0.005 0.26418 309 0.0586 33.0 0.00756 0.05 0.2 0.005 0.06140 
48 0.1456 51.5 0.03320 0.10 0.3 0.010 0.35253 179 0.1509 53.5 0.03527 0.15 0.3 0.005 0.26418 310 0.0651 36.5 0.00953 0.05 0.2 0.005 0.06140 
49 0.1508 53.5 0.03546 0.10 0.3 0.010 0.35253 180 0.1602 55.5 0.03918 0.15 0.3 0.005 0.26418 311 0.0731 40.0 0.01175 0.05 0.2 0.005 0.06140 
50 0.1555 54.5 0.03647 0.10 0.3 0.010 0.35253 181 0.1692 58.0 0.04282 0.15 0.3 0.005 0.26418 312 0.0812 43.0 0.01386 0.05 0.2 0.005 0.06140 
51 0.1628 57.0 0.03977 0.10 0.3 0.010 0.35253 182 0.1767 59.5 0.04642 0.15 0.3 0.005 0.26418 313 0.0892 47.5 0.01651 0.05 0.2 0.005 0.06140 
52 0.1702 58.5 0.04349 0.10 0.3 0.010 0.35253 183 0.1849 61.5 0.05038 0.15 0.3 0.005 0.26418 314 0.0972 52.0 0.01911 0.05 0.2 0.005 0.06140 
53 0.1779 60.0 0.04655 0.10 0.3 0.010 0.35253 184 0.1912 62.5 0.05358 0.15 0.3 0.005 0.26418 315 0.1051 53.0 0.02188 0.05 0.2 0.005 0.06140 
54 0.1827 61.5 0.04919 0.10 0.3 0.010 0.35253 185 0.1966 64.0 0.05611 0.15 0.3 0.005 0.26418 316 0.1151 56.5 0.02654 0.05 0.2 0.005 0.06140 
55 0.1868 62.5 0.05109 0.10 0.3 0.010 0.35253 186 0.2017 65.5 0.05919 0.15 0.3 0.005 0.26418 317 0.1198 61.5 0.02859 0.05 0.2 0.005 0.06140 
56 0.1973 64.0 0.05611 0.10 0.3 0.010 0.35253 187 0.2129 68.5 0.06399 0.15 0.3 0.005 0.26418 318 0.1293 63.0 0.03314 0.05 0.2 0.005 0.06140 
57 0.2011 65.5 0.05794 0.10 0.3 0.010 0.35253 188 0.2361 72.5 0.07438 0.15 0.3 0.005 0.26418 319 0.1389 65.5 0.03692 0.05 0.2 0.005 0.06140 
58 0.0351 11.5 0.00226 0.15 0.3 0.010 0.52030 189 0.0234 7.0 0.00105 0.20 0.3 0.005 0.36361 320 0.1472 68.0 0.03951 0.05 0.2 0.005 0.06140 
59 0.0412 14.0 0.00309 0.15 0.3 0.010 0.52030 190 0.0295 11.5 0.00170 0.20 0.3 0.005 0.36361 321 0.1515 70.0 0.04215 0.05 0.2 0.005 0.06140 
60 0.0473 16.5 0.00401 0.15 0.3 0.010 0.52030 191 0.0350 14.0 0.00234 0.20 0.3 0.005 0.36361 322 0.1581 72.5 0.04444 0.05 0.2 0.005 0.06140 
61 0.0524 18.5 0.00485 0.15 0.3 0.010 0.52030 192 0.0408 18.5 0.00329 0.20 0.3 0.005 0.36361 323 0.1655 75.0 0.04759 0.05 0.2 0.005 0.06140 
62 0.0582 21.5 0.00596 0.15 0.3 0.010 0.52030 193 0.0498 20.5 0.00457 0.20 0.3 0.005 0.36361 324 0.1715 78.0 0.05144 0.05 0.2 0.005 0.06140 
63 0.0621 25.0 0.00757 0.15 0.3 0.010 0.52030 194 0.0582 23.5 0.00603 0.20 0.3 0.005 0.36361 325 0.0208 8.5 0.00103 0.10 0.2 0.005 0.11703 
64 0.0724 27.5 0.00884 0.15 0.3 0.010 0.52030 195 0.0668 26.0 0.00760 0.20 0.3 0.005 0.36361 326 0.0232 11.0 0.00128 0.10 0.2 0.005 0.11703 
65 0.0785 29.5 0.01030 0.15 0.3 0.010 0.52030 196 0.0736 30.0 0.00925 0.20 0.3 0.005 0.36361 327 0.0264 13.0 0.00161 0.10 0.2 0.005 0.11703 
66 0.0852 31.0 0.01193 0.15 0.3 0.010 0.52030 197 0.0816 31.5 0.01115 0.20 0.3 0.005 0.36361 328 0.0304 15.5 0.00217 0.10 0.2 0.005 0.11703 
67 0.0886 33.0 0.01267 0.15 0.3 0.010 0.52030 198 0.0893 34.0 0.01318 0.20 0.3 0.005 0.36361 329 0.0349 20.0 0.00282 0.10 0.2 0.005 0.11703 
68 0.0933 34.0 0.01392 0.15 0.3 0.010 0.52030 199 0.0978 37.0 0.01567 0.20 0.3 0.005 0.36361 330 0.0383 22.0 0.00341 0.10 0.2 0.005 0.11703 
69 0.0986 35.0 0.01483 0.15 0.3 0.010 0.52030 200 0.1058 39.5 0.01807 0.20 0.3 0.005 0.36361 331 0.0459 25.5 0.00433 0.10 0.2 0.005 0.11703 
70 0.1047 37.5 0.01697 0.15 0.3 0.010 0.52030 201 0.1153 43.0 0.02102 0.20 0.3 0.005 0.36361 332 0.0492 28.5 0.00526 0.10 0.2 0.005 0.11703 
71 0.1108 38.5 0.01911 0.15 0.3 0.010 0.52030 202 0.1269 45.0 0.02460 0.20 0.3 0.005 0.36361 333 0.0559 31.5 0.00637 0.10 0.2 0.005 0.11703 
72 0.1165 41.5 0.02097 0.15 0.3 0.010 0.52030 203 0.1322 47.0 0.02654 0.20 0.3 0.005 0.36361 334 0.0600 33.5 0.00738 0.10 0.2 0.005 0.11703 
73 0.1243 43.0 0.02315 0.15 0.3 0.010 0.52030 204 0.1423 49.5 0.03099 0.20 0.3 0.005 0.36361 335 0.0652 36.0 0.00860 0.10 0.2 0.005 0.11703 
74 0.1323 45.5 0.02643 0.15 0.3 0.010 0.52030 205 0.1514 52.5 0.03501 0.20 0.3 0.005 0.36361 336 0.0717 38.0 0.00976 0.10 0.2 0.005 0.11703 
75 0.1411 47.5 0.02990 0.15 0.3 0.010 0.52030 206 0.1578 54.0 0.03698 0.20 0.3 0.005 0.36361 337 0.0771 40.5 0.01157 0.10 0.2 0.005 0.11703 
76 0.1491 49.5 0.03295 0.15 0.3 0.010 0.52030 207 0.1678 56.5 0.04168 0.20 0.3 0.005 0.36361 338 0.0810 43.0 0.01285 0.10 0.2 0.005 0.11703 
77 0.1551 52.0 0.03520 0.15 0.3 0.010 0.52030 208 0.1761 58.5 0.04450 0.20 0.3 0.005 0.36361 339 0.0900 46.0 0.01514 0.10 0.2 0.005 0.11703 
78 0.1659 54.0 0.03866 0.15 0.3 0.010 0.52030 209 0.1830 60.0 0.04793 0.20 0.3 0.005 0.36361 340 0.0974 49.0 0.01759 0.10 0.2 0.005 0.11703 
79 0.1728 57.5 0.04269 0.15 0.3 0.010 0.52030 210 0.1915 62.0 0.05194 0.20 0.3 0.005 0.36361 341 0.1063 52.5 0.02029 0.10 0.2 0.005 0.11703 
80 0.1785 59.0 0.04566 0.15 0.3 0.010 0.52030 211 0.1975 63.5 0.05466 0.20 0.3 0.005 0.36361 342 0.1117 55.0 0.02256 0.10 0.2 0.005 0.11703 
81 0.1908 61.0 0.05123 0.15 0.3 0.010 0.52030 212 0.2037 64.5 0.05801 0.20 0.3 0.005 0.36361 343 0.1223 59.0 0.02724 0.10 0.2 0.005 0.11703 
82 0.2145 64.0 0.05942 0.15 0.3 0.010 0.52030 213 0.2157 67.5 0.06353 0.20 0.3 0.005 0.36361 344 0.1282 62.0 0.02954 0.10 0.2 0.005 0.11703 
83 0.2188 68.5 0.06452 0.15 0.3 0.010 0.52030 214 0.2324 70.5 0.07201 0.20 0.3 0.005 0.36361 345 0.1381 65.0 0.03345 0.10 0.2 0.005 0.11703 
84 0.2351 71.5 0.07201 0.15 0.3 0.010 0.52030 215 0.0213 5.5 0.00103 0.05 0.2 0.010 0.12177 346 0.1459 67.5 0.03692 0.10 0.2 0.005 0.11703 
85 0.0245 5.5 0.00106 0.20 0.3 0.010 0.69174 216 0.0251 9.0 0.00147 0.05 0.2 0.010 0.12177 347 0.1591 72.5 0.04349 0.10 0.2 0.005 0.11703 
86 0.0335 9.0 0.00193 0.20 0.3 0.010 0.69174 217 0.0307 13.0 0.00215 0.05 0.2 0.010 0.12177 348 0.1685 75.5 0.04759 0.10 0.2 0.005 0.11703 
87 0.0421 13.0 0.00295 0.20 0.3 0.010 0.69174 218 0.0366 16.0 0.00294 0.05 0.2 0.010 0.12177 349 0.0210 10.0 0.00103 0.15 0.2 0.005 0.18139 
88 0.0482 16.5 0.00374 0.20 0.3 0.010 0.69174 219 0.0410 19.5 0.00376 0.05 0.2 0.010 0.12177 350 0.0244 11.0 0.00131 0.15 0.2 0.005 0.18139 
89 0.0546 19.0 0.00483 0.20 0.3 0.010 0.69174 220 0.0473 23.0 0.00480 0.05 0.2 0.010 0.12177 351 0.0291 16.0 0.00188 0.15 0.2 0.005 0.18139 
90 0.0623 21.0 0.00609 0.20 0.3 0.010 0.69174 221 0.0537 28.5 0.00622 0.05 0.2 0.010 0.12177 352 0.0345 19.0 0.00254 0.15 0.2 0.005 0.18139 
91 0.0711 25.0 0.00774 0.20 0.3 0.010 0.69174 222 0.0606 32.5 0.00774 0.05 0.2 0.010 0.12177 353 0.0414 21.0 0.00349 0.15 0.2 0.005 0.18139 
92 0.0785 27.5 0.00931 0.20 0.3 0.010 0.69174 223 0.0677 36.0 0.00927 0.05 0.2 0.010 0.12177 354 0.0487 25.0 0.00477 0.15 0.2 0.005 0.18139 
93 0.0863 31.5 0.01114 0.20 0.3 0.010 0.69174 224 0.0747 40.0 0.01109 0.05 0.2 0.010 0.12177 355 0.0553 28.0 0.00597 0.15 0.2 0.005 0.18139 
94 0.0921 33.0 0.01248 0.20 0.3 0.010 0.69174 225 0.0812 43.0 0.01297 0.05 0.2 0.010 0.12177 356 0.0630 32.5 0.00759 0.15 0.2 0.005 0.18139 
95 0.1007 34.5 0.01433 0.20 0.3 0.010 0.69174 226 0.0908 47.0 0.01589 0.05 0.2 0.010 0.12177 357 0.0696 35.0 0.00906 0.15 0.2 0.005 0.18139 
96 0.1076 36.5 0.01631 0.20 0.3 0.010 0.69174 227 0.1006 51.5 0.01874 0.05 0.2 0.010 0.12177 358 0.0779 39.0 0.01117 0.15 0.2 0.005 0.18139 
97 0.1158 38.5 0.01854 0.20 0.3 0.010 0.69174 228 0.1078 54.0 0.02136 0.05 0.2 0.010 0.12177 359 0.0862 42.5 0.01358 0.15 0.2 0.005 0.18139 
98 0.1245 40.5 0.02097 0.20 0.3 0.010 0.69174 229 0.1173 57.0 0.02511 0.05 0.2 0.010 0.12177 360 0.0946 47.0 0.01662 0.15 0.2 0.005 0.18139 
99 0.1291 42.0 0.02292 0.20 0.3 0.010 0.69174 230 0.1240 60.0 0.02724 0.05 0.2 0.010 0.12177 361 0.1045 51.0 0.01944 0.15 0.2 0.005 0.18139 
100 0.1356 46.0 0.02579 0.20 0.3 0.010 0.69174 231 0.1294 62.0 0.02948 0.05 0.2 0.010 0.12177 362 0.1123 54.0 0.02263 0.15 0.2 0.005 0.18139 
101 0.1480 48.0 0.03033 0.20 0.3 0.010 0.69174 232 0.1376 65.0 0.03314 0.05 0.2 0.010 0.12177 363 0.1209 58.0 0.02482 0.15 0.2 0.005 0.18139 
102 0.1533 50.0 0.03240 0.20 0.3 0.010 0.69174 233 0.1487 68.5 0.03756 0.05 0.2 0.010 0.12177 364 0.1279 60.0 0.02771 0.15 0.2 0.005 0.18139 
103 0.1639 52.5 0.03615 0.20 0.3 0.010 0.69174 234 0.1528 69.5 0.04023 0.05 0.2 0.010 0.12177 365 0.1399 65.0 0.03252 0.15 0.2 0.005 0.18139 
104 0.1691 54.0 0.03808 0.20 0.3 0.010 0.69174 235 0.1594 70.5 0.04342 0.05 0.2 0.010 0.12177 366 0.1482 68.0 0.03628 0.15 0.2 0.005 0.18139 
105 0.1771 56.5 0.04182 0.20 0.3 0.010 0.69174 236 0.1755 76.0 0.05144 0.05 0.2 0.010 0.12177 367 0.1567 70.5 0.04016 0.15 0.2 0.005 0.18139 
106 0.1866 58.0 0.04587 0.20 0.3 0.010 0.69174 237 0.1834 79.0 0.05531 0.05 0.2 0.010 0.12177 368 0.1609 72.0 0.04471 0.15 0.2 0.005 0.18139 
107 0.1898 59.0 0.04759 0.20 0.3 0.010 0.69174 238 0.0222 6.0 0.00103 0.10 0.2 0.010 0.23534 369 0.1668 74.5 0.04553 0.15 0.2 0.005 0.18139 
108 0.2009 61.5 0.05215 0.20 0.3 0.010 0.69174 239 0.0256 9.5 0.00143 0.10 0.2 0.010 0.23534 370 0.1737 75.5 0.04933 0.15 0.2 0.005 0.18139 
109 0.2056 63.0 0.05394 0.20 0.3 0.010 0.69174 240 0.0307 13.0 0.00201 0.10 0.2 0.010 0.23534 371 0.0214 11.5 0.00103 0.20 0.2 0.005 0.23141 
110 0.2180 66.0 0.05927 0.20 0.3 0.010 0.69174 241 0.0364 17.5 0.00278 0.10 0.2 0.010 0.23534 372 0.0258 12.0 0.00134 0.20 0.2 0.005 0.23141 
111 0.2308 69.0 0.06620 0.20 0.3 0.010 0.69174 242 0.0437 21.0 0.00374 0.10 0.2 0.010 0.23534 373 0.0297 16.0 0.00188 0.20 0.2 0.005 0.23141 
112 0.2377 71.0 0.07201 0.20 0.3 0.010 0.69174 243 0.0495 25.0 0.00493 0.10 0.2 0.010 0.23534 374 0.0350 19.0 0.00252 0.20 0.2 0.005 0.23141 
113 0.0202 6.0 0.00103 0.05 0.3 0.005 0.08984 244 0.0580 27.5 0.00616 0.10 0.2 0.010 0.23534 375 0.0391 21.0 0.00305 0.20 0.2 0.005 0.23141 
114 0.0249 8.0 0.00154 0.05 0.3 0.005 0.08984 245 0.0656 31.5 0.00790 0.10 0.2 0.010 0.23534 376 0.0469 26.0 0.00428 0.20 0.2 0.005 0.23141 
115 0.0320 13.5 0.00251 0.05 0.3 0.005 0.08984 246 0.0724 35.0 0.00979 0.10 0.2 0.010 0.23534 377 0.0543 28.5 0.00557 0.20 0.2 0.005 0.23141 
116 0.0378 16.0 0.00337 0.05 0.3 0.005 0.08984 247 0.0888 42.5 0.01410 0.10 0.2 0.010 0.23534 378 0.0609 33.0 0.00696 0.20 0.2 0.005 0.23141 
117 0.0435 20.0 0.00442 0.05 0.3 0.005 0.08984 248 0.1016 47.5 0.01776 0.10 0.2 0.010 0.23534 379 0.0681 36.0 0.00850 0.20 0.2 0.005 0.23141 
118 0.0504 22.5 0.00580 0.05 0.3 0.005 0.08984 249 0.1097 51.0 0.02072 0.10 0.2 0.010 0.23534 380 0.0726 38.5 0.00974 0.20 0.2 0.005 0.23141 
119 0.0566 25.0 0.00697 0.05 0.3 0.005 0.08984 250 0.1190 54.5 0.02370 0.10 0.2 0.010 0.23534 381 0.0831 42.5 0.01210 0.20 0.2 0.005 0.23141 
120 0.0624 27.5 0.00841 0.05 0.3 0.005 0.08984 251 0.1265 58.0 0.02730 0.10 0.2 0.010 0.23534 382 0.0900 46.0 0.01448 0.20 0.2 0.005 0.23141 
121 0.0682 30.0 0.01020 0.05 0.3 0.005 0.08984 252 0.1336 60.5 0.02990 0.10 0.2 0.010 0.23534 383 0.0975 49.0 0.01680 0.20 0.2 0.005 0.23141 
122 0.0751 32.0 0.01195 0.05 0.3 0.005 0.08984 253 0.1447 64.5 0.03482 0.10 0.2 0.010 0.23534 384 0.1060 52.5 0.01928 0.20 0.2 0.005 0.23141 
123 0.0823 35.0 0.01379 0.05 0.3 0.005 0.08984 254 0.1532 68.0 0.03840 0.10 0.2 0.010 0.23534 385 0.1154 55.5 0.02231 0.20 0.2 0.005 0.23141 
124 0.0897 36.5 0.01566 0.05 0.3 0.005 0.08984 255 0.1625 70.0 0.04142 0.10 0.2 0.010 0.23534 386 0.1256 60.0 0.02539 0.20 0.2 0.005 0.23141 
125 0.0966 37.0 0.01772 0.05 0.3 0.005 0.08984 256 0.1702 73.5 0.04587 0.10 0.2 0.010 0.23534 387 0.1364 64.0 0.03008 0.20 0.2 0.005 0.23141 
126 0.1048 41.0 0.02059 0.05 0.3 0.005 0.08984 257 0.1828 76.5 0.05038 0.10 0.2 0.010 0.23534 388 0.1479 68.0 0.03426 0.20 0.2 0.005 0.23141 
127 0.1111 43.0 0.02334 0.05 0.3 0.005 0.08984 258 0.0224 7.5 0.00103 0.15 0.2 0.010 0.34907 389 0.1536 70.5 0.03788 0.20 0.2 0.005 0.23141 
128 0.1182 47.0 0.02654 0.05 0.3 0.005 0.08984 259 0.0264 11.5 0.00142 0.15 0.2 0.010 0.34907 390 0.1585 72.5 0.03977 0.20 0.2 0.005 0.23141 
129 0.1337 51.5 0.03221 0.05 0.3 0.005 0.08984 260 0.0322 13.5 0.00203 0.15 0.2 0.010 0.34907 391 0.1647 74.5 0.04282 0.20 0.2 0.005 0.23141 
130 0.1488 55.0 0.03866 0.05 0.3 0.005 0.08984 261 0.0367 17.5 0.00262 0.15 0.2 0.010 0.34907 392 0.1735 77.0 0.04690 0.20 0.2 0.005 0.23141 
131 0.1571 58.0 0.04155 0.05 0.3 0.005 0.08984 262 0.0434 19.0 0.00350 0.15 0.2 0.010 0.34907 393 0.1816 81.0 0.05180 0.20 0.2 0.005 0.23141 
Table 2

Experimental data collected in this study for top-hinged plates located at the middle of a sloped rectangular open channel of width B = 0.25 cm and longitudinal slope S = 0.005

Test No.h (m)θ (degree)Q (m3/s)b (m)L (m)t (m)M (kg)Test No.h (m)θ (degree)Q (m3/s)b (m)L (m)t (m)M (kg)Test No.h (m)θ (degree)Q (m3/s)b (m)L (m)t (m)M (kg)
1 0.0184 3.5 0.00103 0.05 0.3 0.01 0.17815 99 0.0559 30.5 0.00889 0.1 0.3 0.005 0.18025 197 0.104 48.0 0.01950 0.15 0.2 0.01 0.34907 
2 0.0242 6.5 0.00166 0.05 0.3 0.01 0.17815 100 0.0641 34.5 0.01157 0.1 0.3 0.005 0.18025 198 0.1125 51.0 0.02210 0.15 0.2 0.01 0.34907 
3 0.0297 12.0 0.00296 0.05 0.3 0.01 0.17815 101 0.0788 39.5 0.01559 0.1 0.3 0.005 0.18025 199 0.1154 54.5 0.02482 0.15 0.2 0.01 0.34907 
4 0.0378 15.5 0.00451 0.05 0.3 0.01 0.17815 102 0.0903 43.0 0.02154 0.1 0.3 0.005 0.18025 200 0.1245 58.0 0.02830 0.15 0.2 0.01 0.34907 
5 0.0458 21.5 0.00674 0.05 0.3 0.01 0.17815 103 0.0964 47.5 0.02370 0.1 0.3 0.005 0.18025 201 0.135 60.5 0.03130 0.15 0.2 0.01 0.34907 
6 0.0547 25.0 0.00906 0.05 0.3 0.01 0.17815 104 0.1116 51.0 0.03008 0.1 0.3 0.005 0.18025 202 0.1415 64.0 0.03376 0.15 0.2 0.01 0.34907 
7 0.0658 31.0 0.01193 0.05 0.3 0.01 0.17815 105 0.1223 54.0 0.03533 0.1 0.3 0.005 0.18025 203 0.148 65.5 0.03692 0.15 0.2 0.01 0.34907 
8 0.0728 33.5 0.01475 0.05 0.3 0.01 0.17815 106 0.1371 58.5 0.04082 0.1 0.3 0.005 0.18025 204 0.1575 67.5 0.04016 0.15 0.2 0.01 0.34907 
9 0.0842 38.0 0.01944 0.05 0.3 0.01 0.17815 107 0.154 61.5 0.04842 0.1 0.3 0.005 0.18025 205 0.167 71.0 0.04484 0.15 0.2 0.01 0.34907 
10 0.0924 41.0 0.02342 0.05 0.3 0.01 0.17815 108 0.1638 65.0 0.05279 0.1 0.3 0.005 0.18025 206 0.1705 73.0 0.04759 0.15 0.2 0.01 0.34907 
11 0.1002 45.5 0.02654 0.05 0.3 0.01 0.17815 109 0.1741 66.0 0.05757 0.1 0.3 0.005 0.18025 207 0.0217 7.0 0.00103 0.2 0.2 0.01 0.46814 
12 0.1144 49.0 0.03191 0.05 0.3 0.01 0.17815 110 0.1849 67.0 0.06353 0.1 0.3 0.005 0.18025 208 0.026 9.0 0.00137 0.2 0.2 0.01 0.46814 
13 0.1261 51.5 0.03788 0.05 0.3 0.01 0.17815 111 0.0183 8.0 0.00103 0.15 0.3 0.005 0.26418 209 0.0349 12.5 0.00227 0.2 0.2 0.01 0.46814 
14 0.1350 55.0 0.04149 0.05 0.3 0.01 0.17815 112 0.0227 11.0 0.00161 0.15 0.3 0.005 0.26418 210 0.0423 17.0 0.00327 0.2 0.2 0.01 0.46814 
15 0.1412 57.5 0.04655 0.05 0.3 0.01 0.17815 113 0.033 17.0 0.00308 0.15 0.3 0.005 0.26418 211 0.0527 22.0 0.00485 0.2 0.2 0.01 0.46814 
16 0.1510 60.0 0.05038 0.05 0.3 0.01 0.17815 114 0.0436 23.0 0.00505 0.15 0.3 0.005 0.26418 212 0.0605 25.0 0.00628 0.2 0.2 0.01 0.46814 
17 0.1600 61.5 0.05466 0.05 0.3 0.01 0.17815 115 0.0574 29.5 0.00810 0.15 0.3 0.005 0.26418 213 0.0677 31.0 0.00817 0.2 0.2 0.01 0.46814 
18 0.1665 62.5 0.05831 0.05 0.3 0.01 0.17815 116 0.0749 35.0 0.01241 0.15 0.3 0.005 0.26418 214 0.0777 35.0 0.01037 0.2 0.2 0.01 0.46814 
19 0.1847 63.5 0.06889 0.05 0.3 0.01 0.17815 117 0.0833 37.5 0.01512 0.15 0.3 0.005 0.26418 215 0.0872 38.5 0.01279 0.2 0.2 0.01 0.46814 
20 0.0194 5.0 0.00103 0.1 0.3 0.01 0.35253 118 0.097 40.0 0.01850 0.15 0.3 0.005 0.26418 216 0.0971 43.5 0.01596 0.2 0.2 0.01 0.46814 
21 0.0232 8.0 0.00145 0.1 0.3 0.01 0.35253 119 0.1065 45.5 0.02220 0.15 0.3 0.005 0.26418 217 0.1071 48.5 0.01947 0.2 0.2 0.01 0.46814 
22 0.0275 12.0 0.00216 0.1 0.3 0.01 0.35253 120 0.1189 50.0 0.02771 0.15 0.3 0.005 0.26418 218 0.1201 52.0 0.02283 0.2 0.2 0.01 0.46814 
23 0.0401 18.5 0.00409 0.1 0.3 0.01 0.35253 121 0.1251 52.0 0.03069 0.15 0.3 0.005 0.26418 219 0.1303 56.0 0.02654 0.2 0.2 0.01 0.46814 
24 0.0486 24.0 0.00619 0.1 0.3 0.01 0.35253 122 0.136 53.5 0.03376 0.15 0.3 0.005 0.26418 220 0.1351 58.5 0.02889 0.2 0.2 0.01 0.46814 
25 0.0583 28.0 0.00839 0.1 0.3 0.01 0.35253 123 0.1427 56.0 0.03951 0.15 0.3 0.005 0.26418 221 0.1461 62.0 0.03252 0.2 0.2 0.01 0.46814 
26 0.0706 32.0 0.01077 0.1 0.3 0.01 0.35253 124 0.152 58.0 0.04383 0.15 0.3 0.005 0.26418 222 0.1583 65.0 0.03763 0.2 0.2 0.01 0.46814 
27 0.0786 36.5 0.01395 0.1 0.3 0.01 0.35253 125 0.1617 60.5 0.04793 0.15 0.3 0.005 0.26418 223 0.1676 67.5 0.04089 0.2 0.2 0.01 0.46814 
28 0.0916 40.5 0.01765 0.1 0.3 0.01 0.35253 126 0.1711 63.5 0.05180 0.15 0.3 0.005 0.26418 224 0.1811 70.5 0.04553 0.2 0.2 0.01 0.46814 
29 0.1016 45.0 0.02165 0.1 0.3 0.01 0.35253 127 0.1772 66.0 0.05538 0.15 0.3 0.005 0.26418 225 0.0281 13.5 0.00306 0.05 0.2 0.005 0.0614 
30 0.1161 49.0 0.02741 0.1 0.3 0.01 0.35253 128 0.1921 72.0 0.06581 0.15 0.3 0.005 0.26418 226 0.0349 21.5 0.00505 0.05 0.2 0.005 0.0614 
31 0.1249 51.0 0.03069 0.1 0.3 0.01 0.35253 129 0.02 6.0 0.00103 0.2 0.3 0.005 0.36361 227 0.0393 27.5 0.00680 0.05 0.2 0.005 0.0614 
32 0.1303 54.5 0.03438 0.1 0.3 0.01 0.35253 130 0.0237 9.0 0.00142 0.2 0.3 0.005 0.36361 228 0.0498 29.5 0.00925 0.05 0.2 0.005 0.0614 
33 0.1364 56.0 0.03756 0.1 0.3 0.01 0.35253 131 0.0311 13.5 0.00243 0.2 0.3 0.005 0.36361 229 0.0571 34.0 0.01216 0.05 0.2 0.005 0.0614 
34 0.1481 57.5 0.04082 0.1 0.3 0.01 0.35253 132 0.0406 18.5 0.00381 0.2 0.3 0.005 0.36361 230 0.0681 39.0 0.01634 0.05 0.2 0.005 0.0614 
35 0.1501 60.0 0.04349 0.1 0.3 0.01 0.35253 133 0.051 23.0 0.00571 0.2 0.3 0.005 0.36361 231 0.0781 44.0 0.02037 0.05 0.2 0.005 0.0614 
36 0.1631 62.5 0.04968 0.1 0.3 0.01 0.35253 134 0.0616 27.0 0.00795 0.2 0.3 0.005 0.36361 232 0.0933 49.5 0.02654 0.05 0.2 0.005 0.0614 
37 0.1801 65.5 0.05575 0.1 0.3 0.01 0.35253 135 0.0696 30.5 0.01010 0.2 0.3 0.005 0.36361 233 0.1027 52.5 0.03130 0.05 0.2 0.005 0.0614 
38 0.1877 67.5 0.05979 0.1 0.3 0.01 0.35253 136 0.0816 34.5 0.01303 0.2 0.3 0.005 0.36361 234 0.1141 56.5 0.03821 0.05 0.2 0.005 0.0614 
39 0.1961 70.0 0.06505 0.1 0.3 0.01 0.35253 137 0.0941 39.0 0.01707 0.2 0.3 0.005 0.36361 235 0.1238 60.0 0.04349 0.05 0.2 0.005 0.0614 
40 0.0207 5.5 0.00103 0.15 0.3 0.01 0.5203 138 0.1091 44.5 0.02265 0.2 0.3 0.005 0.36361 236 0.1389 64.5 0.05322 0.05 0.2 0.005 0.0614 
41 0.0273 8.5 0.00163 0.15 0.3 0.01 0.5203 139 0.12 48.5 0.02683 0.2 0.3 0.005 0.36361 237 0.1479 67.0 0.05979 0.05 0.2 0.005 0.0614 
42 0.0385 15.0 0.00333 0.15 0.3 0.01 0.5203 140 0.1349 52.0 0.03252 0.2 0.3 0.005 0.36361 238 0.0176 5.0 0.00103 0.1 0.2 0.005 0.11703 
43 0.0503 20.5 0.00520 0.15 0.3 0.01 0.5203 141 0.1426 54.5 0.03628 0.2 0.3 0.005 0.36361 239 0.021 7.0 0.00127 0.1 0.2 0.005 0.11703 
44 0.0653 27.0 0.00818 0.15 0.3 0.01 0.5203 142 0.1544 57.0 0.04115 0.2 0.3 0.005 0.36361 240 0.0275 15.0 0.00247 0.1 0.2 0.005 0.11703 
45 0.0782 32.0 0.01141 0.15 0.3 0.01 0.5203 143 0.1649 58.5 0.04484 0.2 0.3 0.005 0.36361 241 0.0341 20.0 0.00364 0.1 0.2 0.005 0.11703 
46 0.0895 36.0 0.01452 0.15 0.3 0.01 0.5203 144 0.1668 63.0 0.04759 0.2 0.3 0.005 0.36361 242 0.0392 25.0 0.00486 0.1 0.2 0.005 0.11703 
47 0.1047 41.0 0.01940 0.15 0.3 0.01 0.5203 145 0.1916 66.0 0.05757 0.2 0.3 0.005 0.36361 243 0.0453 30.0 0.00649 0.1 0.2 0.005 0.11703 
48 0.1222 47.5 0.02539 0.15 0.3 0.01 0.5203 146 0.2065 71.0 0.06581 0.2 0.3 0.005 0.36361 244 0.0543 34.0 0.00857 0.1 0.2 0.005 0.11703 
49 0.1327 50.0 0.02954 0.15 0.3 0.01 0.5203 147 0.0181 3.5 0.00103 0.05 0.2 0.01 0.12177 245 0.061 41.0 0.01109 0.1 0.2 0.005 0.11703 
50 0.1386 52.5 0.03197 0.15 0.3 0.01 0.5203 148 0.0271 13.0 0.00243 0.05 0.2 0.01 0.12177 246 0.0751 46.0 0.01575 0.1 0.2 0.005 0.11703 
51 0.1441 54.0 0.03438 0.15 0.3 0.01 0.5203 149 0.0335 16.5 0.00362 0.05 0.2 0.01 0.12177 247 0.0901 49.0 0.02096 0.1 0.2 0.005 0.11703 
52 0.1550 56.5 0.03827 0.15 0.3 0.01 0.5203 150 0.0388 24.0 0.00485 0.05 0.2 0.01 0.12177 248 0.0971 52.5 0.02426 0.1 0.2 0.005 0.11703 
53 0.1623 58.5 0.04215 0.15 0.3 0.01 0.5203 151 0.0443 28.0 0.00631 0.05 0.2 0.01 0.12177 249 0.1073 55.0 0.02830 0.1 0.2 0.005 0.11703 
54 0.1713 60.0 0.04573 0.15 0.3 0.01 0.5203 152 0.0521 31.5 0.00811 0.05 0.2 0.01 0.12177 250 0.1163 58.0 0.03252 0.1 0.2 0.005 0.11703 
55 0.1771 62.0 0.04835 0.15 0.3 0.01 0.5203 153 0.057 34.0 0.00976 0.05 0.2 0.01 0.12177 251 0.1251 61.0 0.03628 0.1 0.2 0.005 0.11703 
56 0.1840 64.0 0.05194 0.15 0.3 0.01 0.5203 154 0.0625 37.5 0.01205 0.05 0.2 0.01 0.12177 252 0.1371 64.0 0.04149 0.1 0.2 0.005 0.11703 
57 0.1892 65.0 0.05430 0.15 0.3 0.01 0.5203 155 0.068 42.5 0.01437 0.05 0.2 0.01 0.12177 253 0.1466 68.5 0.04759 0.1 0.2 0.005 0.11703 
58 0.1933 66.5 0.05721 0.15 0.3 0.01 0.5203 156 0.0752 44.5 0.01736 0.05 0.2 0.01 0.12177 254 0.1711 75.5 0.06278 0.1 0.2 0.005 0.11703 
59 0.2003 68.0 0.05979 0.15 0.3 0.01 0.5203 157 0.084 47.0 0.02021 0.05 0.2 0.01 0.12177 255 0.0191 5.0 0.00103 0.15 0.2 0.005 0.18139 
60 0.2143 70.0 0.06735 0.15 0.3 0.01 0.5203 158 0.09 50.0 0.02300 0.05 0.2 0.01 0.12177 256 0.0234 10.0 0.00150 0.15 0.2 0.005 0.18139 
61 0.0222 6.5 0.00103 0.2 0.3 0.01 0.69174 159 0.0945 54.0 0.02426 0.05 0.2 0.01 0.12177 257 0.0285 17.0 0.00238 0.15 0.2 0.005 0.18139 
62 0.0260 9.0 0.00150 0.2 0.3 0.01 0.69174 160 0.104 57.0 0.02830 0.05 0.2 0.01 0.12177 258 0.0334 20.5 0.00327 0.15 0.2 0.005 0.18139 
63 0.0417 16.5 0.00348 0.2 0.3 0.01 0.69174 161 0.1142 60.5 0.03314 0.05 0.2 0.01 0.12177 259 0.041 25.0 0.00471 0.15 0.2 0.005 0.18139 
64 0.0573 22.5 0.00609 0.2 0.3 0.01 0.69174 162 0.1265 64.0 0.03918 0.05 0.2 0.01 0.12177 260 0.0485 29.0 0.00616 0.15 0.2 0.005 0.18139 
65 0.0700 27.0 0.00839 0.2 0.3 0.01 0.69174 163 0.1385 66.5 0.04553 0.05 0.2 0.01 0.12177 261 0.0555 33.0 0.00748 0.15 0.2 0.005 0.18139 
66 0.0831 30.0 0.01120 0.2 0.3 0.01 0.69174 164 0.15 69.5 0.05073 0.05 0.2 0.01 0.12177 262 0.063 36.5 0.00945 0.15 0.2 0.005 0.18139 
67 0.0913 34.5 0.01391 0.2 0.3 0.01 0.69174 165 0.1611 74.0 0.05794 0.05 0.2 0.01 0.12177 263 0.0725 40.0 0.01161 0.15 0.2 0.005 0.18139 
68 0.1067 40.0 0.01773 0.2 0.3 0.01 0.69174 166 0.174 77.0 0.06429 0.05 0.2 0.01 0.12177 264 0.0775 44.0 0.01386 0.15 0.2 0.005 0.18139 
69 0.1281 45.5 0.02375 0.2 0.3 0.01 0.69174 167 0.02 4.5 0.00103 0.1 0.2 0.01 0.23534 265 0.085 47.5 0.01596 0.15 0.2 0.005 0.18139 
70 0.1382 49.0 0.02942 0.2 0.3 0.01 0.69174 168 0.0242 6.5 0.00135 0.1 0.2 0.01 0.23534 266 0.0911 51.0 0.01933 0.15 0.2 0.005 0.18139 
71 0.1537 52.5 0.03438 0.2 0.3 0.01 0.69174 169 0.0298 14.0 0.00243 0.1 0.2 0.01 0.23534 267 0.1007 53.5 0.02251 0.15 0.2 0.005 0.18139 
72 0.1728 57.0 0.04215 0.2 0.3 0.01 0.69174 170 0.0375 19.0 0.00378 0.1 0.2 0.01 0.23534 268 0.111 57.0 0.02539 0.15 0.2 0.005 0.18139 
73 0.1772 60.0 0.04450 0.2 0.3 0.01 0.69174 171 0.0471 24.0 0.00548 0.1 0.2 0.01 0.23534 269 0.116 60.5 0.02830 0.15 0.2 0.005 0.18139 
74 0.1862 62.5 0.04891 0.2 0.3 0.01 0.69174 172 0.0536 28.0 0.00693 0.1 0.2 0.01 0.23534 270 0.1226 64.5 0.03069 0.15 0.2 0.005 0.18139 
75 0.2011 65.5 0.05408 0.2 0.3 0.01 0.69174 173 0.0601 31.5 0.00851 0.1 0.2 0.01 0.23534 271 0.1452 66.0 0.04016 0.15 0.2 0.005 0.18139 
76 0.2263 69.0 0.06658 0.2 0.3 0.01 0.69174 174 0.0671 36.0 0.01028 0.1 0.2 0.01 0.23534 272 0.155 68.0 0.04417 0.15 0.2 0.005 0.18139 
77 0.0162 5.0 0.00103 0.05 0.3 0.005 0.08984 175 0.075 40.5 0.01266 0.1 0.2 0.01 0.23534 273 0.1626 71.0 0.04759 0.15 0.2 0.005 0.18139 
78 0.0194 8.5 0.00150 0.05 0.3 0.005 0.08984 176 0.0839 43.0 0.01479 0.1 0.2 0.01 0.23534 274 0.1748 75.0 0.05394 0.15 0.2 0.005 0.18139 
79 0.0241 14.0 0.00251 0.05 0.3 0.005 0.08984 177 0.0871 46.5 0.01707 0.1 0.2 0.01 0.23534 275 0.1873 79.0 0.06203 0.15 0.2 0.005 0.18139 
80 0.0326 19.5 0.00453 0.05 0.3 0.005 0.08984 178 0.0991 49.5 0.02042 0.1 0.2 0.01 0.23534 276 0.0209 6.0 0.00103 0.2 0.2 0.005 0.23141 
81 0.0416 23.0 0.00639 0.05 0.3 0.005 0.08984 179 0.1074 53.0 0.02482 0.1 0.2 0.01 0.23534 277 0.0239 10.0 0.00142 0.2 0.2 0.005 0.23141 
82 0.0500 28.5 0.00909 0.05 0.3 0.005 0.08984 180 0.1136 56.5 0.02741 0.1 0.2 0.01 0.23534 278 0.0313 15.0 0.00241 0.2 0.2 0.005 0.23141 
83 0.0583 32.0 0.01263 0.05 0.3 0.005 0.08984 181 0.1222 60.0 0.03069 0.1 0.2 0.01 0.23534 279 0.0385 20.0 0.00349 0.2 0.2 0.005 0.23141 
84 0.0683 36.0 0.01655 0.05 0.3 0.005 0.08984 182 0.1291 64.5 0.03376 0.1 0.2 0.01 0.23534 280 0.049 28.5 0.00560 0.2 0.2 0.005 0.23141 
85 0.0790 37.5 0.02075 0.05 0.3 0.005 0.08984 183 0.1432 66.0 0.04016 0.1 0.2 0.01 0.23534 281 0.057 33.0 0.00740 0.2 0.2 0.005 0.23141 
86 0.0927 42.0 0.02539 0.05 0.3 0.005 0.08984 184 0.1533 69.5 0.04484 0.1 0.2 0.01 0.23534 282 0.065 36.5 0.00938 0.2 0.2 0.005 0.23141 
87 0.1016 45.5 0.02948 0.05 0.3 0.005 0.08984 185 0.1627 71.5 0.04898 0.1 0.2 0.01 0.23534 283 0.0745 40.5 0.01159 0.2 0.2 0.005 0.23141 
88 0.1132 48.5 0.03501 0.05 0.3 0.005 0.08984 186 0.1805 76.0 0.05831 0.1 0.2 0.01 0.23534 284 0.086 45.5 0.01475 0.2 0.2 0.005 0.23141 
89 0.1262 52.5 0.04182 0.05 0.3 0.005 0.08984 187 0.0209 5.0 0.00103 0.15 0.2 0.01 0.34907 285 0.096 51.0 0.01799 0.2 0.2 0.005 0.23141 
90 0.1354 54.5 0.04587 0.05 0.3 0.005 0.08984 188 0.0249 9.0 0.00145 0.15 0.2 0.01 0.34907 286 0.107 55.0 0.02282 0.2 0.2 0.005 0.23141 
91 0.1462 57.5 0.05109 0.05 0.3 0.005 0.08984 189 0.0323 15.0 0.00253 0.15 0.2 0.01 0.34907 287 0.1128 59.0 0.02596 0.2 0.2 0.005 0.23141 
92 0.1553 59.0 0.05684 0.05 0.3 0.005 0.08984 190 0.0425 20.0 0.00399 0.15 0.2 0.01 0.34907 288 0.1253 62.0 0.02948 0.2 0.2 0.005 0.23141 
93 0.1666 61.0 0.06203 0.05 0.3 0.005 0.08984 191 0.051 24.0 0.00526 0.15 0.2 0.01 0.34907 289 0.1348 67.0 0.03376 0.2 0.2 0.005 0.23141 
94 0.0171 7.5 0.00103 0.1 0.3 0.005 0.18025 192 0.0642 29.0 0.00767 0.15 0.2 0.01 0.34907 290 0.1415 69.0 0.03692 0.2 0.2 0.005 0.23141 
95 0.0205 12.5 0.00161 0.1 0.3 0.005 0.18025 193 0.0715 34.5 0.00996 0.15 0.2 0.01 0.34907 291 0.1548 71.0 0.04215 0.2 0.2 0.005 0.23141 
96 0.0272 15.5 0.00261 0.1 0.3 0.005 0.18025 194 0.0785 38.0 0.01190 0.15 0.2 0.01 0.34907 292 0.1659 73.0 0.04759 0.2 0.2 0.005 0.23141 
97 0.0349 20.0 0.00395 0.1 0.3 0.005 0.18025 195 0.0855 41.0 0.01402 0.15 0.2 0.01 0.34907 293 0.173 77.5 0.05180 0.2 0.2 0.005 0.23141 
98 0.0460 26.5 0.00659 0.1 0.3 0.005 0.18025 196 0.0924 44.0 0.01627 0.15 0.2 0.01 0.34907 294 0.1926 80.0 0.06053 0.2 0.2 0.005 0.23141 
Test No.h (m)θ (degree)Q (m3/s)b (m)L (m)t (m)M (kg)Test No.h (m)θ (degree)Q (m3/s)b (m)L (m)t (m)M (kg)Test No.h (m)θ (degree)Q (m3/s)b (m)L (m)t (m)M (kg)
1 0.0184 3.5 0.00103 0.05 0.3 0.01 0.17815 99 0.0559 30.5 0.00889 0.1 0.3 0.005 0.18025 197 0.104 48.0 0.01950 0.15 0.2 0.01 0.34907 
2 0.0242 6.5 0.00166 0.05 0.3 0.01 0.17815 100 0.0641 34.5 0.01157 0.1 0.3 0.005 0.18025 198 0.1125 51.0 0.02210 0.15 0.2 0.01 0.34907 
3 0.0297 12.0 0.00296 0.05 0.3 0.01 0.17815 101 0.0788 39.5 0.01559 0.1 0.3 0.005 0.18025 199 0.1154 54.5 0.02482 0.15 0.2 0.01 0.34907 
4 0.0378 15.5 0.00451 0.05 0.3 0.01 0.17815 102 0.0903 43.0 0.02154 0.1 0.3 0.005 0.18025 200 0.1245 58.0 0.02830 0.15 0.2 0.01 0.34907 
5 0.0458 21.5 0.00674 0.05 0.3 0.01 0.17815 103 0.0964 47.5 0.02370 0.1 0.3 0.005 0.18025 201 0.135 60.5 0.03130 0.15 0.2 0.01 0.34907 
6 0.0547 25.0 0.00906 0.05 0.3 0.01 0.17815 104 0.1116 51.0 0.03008 0.1 0.3 0.005 0.18025 202 0.1415 64.0 0.03376 0.15 0.2 0.01 0.34907 
7 0.0658 31.0 0.01193 0.05 0.3 0.01 0.17815 105 0.1223 54.0 0.03533 0.1 0.3 0.005 0.18025 203 0.148 65.5 0.03692 0.15 0.2 0.01 0.34907 
8 0.0728 33.5 0.01475 0.05 0.3 0.01 0.17815 106 0.1371 58.5 0.04082 0.1 0.3 0.005 0.18025 204 0.1575 67.5 0.04016 0.15 0.2 0.01 0.34907 
9 0.0842 38.0 0.01944 0.05 0.3 0.01 0.17815 107 0.154 61.5 0.04842 0.1 0.3 0.005 0.18025 205 0.167 71.0 0.04484 0.15 0.2 0.01 0.34907 
10 0.0924 41.0 0.02342 0.05 0.3 0.01 0.17815 108 0.1638 65.0 0.05279 0.1 0.3 0.005 0.18025 206 0.1705 73.0 0.04759 0.15 0.2 0.01 0.34907 
11 0.1002 45.5 0.02654 0.05 0.3 0.01 0.17815 109 0.1741 66.0 0.05757 0.1 0.3 0.005 0.18025 207 0.0217 7.0 0.00103 0.2 0.2 0.01 0.46814 
12 0.1144 49.0 0.03191 0.05 0.3 0.01 0.17815 110 0.1849 67.0 0.06353 0.1 0.3 0.005 0.18025 208 0.026 9.0 0.00137 0.2 0.2 0.01 0.46814 
13 0.1261 51.5 0.03788 0.05 0.3 0.01 0.17815 111 0.0183 8.0 0.00103 0.15 0.3 0.005 0.26418 209 0.0349 12.5 0.00227 0.2 0.2 0.01 0.46814 
14 0.1350 55.0 0.04149 0.05 0.3 0.01 0.17815 112 0.0227 11.0 0.00161 0.15 0.3 0.005 0.26418 210 0.0423 17.0 0.00327 0.2 0.2 0.01 0.46814 
15 0.1412 57.5 0.04655 0.05 0.3 0.01 0.17815 113 0.033 17.0 0.00308 0.15 0.3 0.005 0.26418 211 0.0527 22.0 0.00485 0.2 0.2 0.01 0.46814 
16 0.1510 60.0 0.05038 0.05 0.3 0.01 0.17815 114 0.0436 23.0 0.00505 0.15 0.3 0.005 0.26418 212 0.0605 25.0 0.00628 0.2 0.2 0.01 0.46814 
17 0.1600 61.5 0.05466 0.05 0.3 0.01 0.17815 115 0.0574 29.5 0.00810 0.15 0.3 0.005 0.26418 213 0.0677 31.0 0.00817 0.2 0.2 0.01 0.46814 
18 0.1665 62.5 0.05831 0.05 0.3 0.01 0.17815 116 0.0749 35.0 0.01241 0.15 0.3 0.005 0.26418 214 0.0777 35.0 0.01037 0.2 0.2 0.01 0.46814 
19 0.1847 63.5 0.06889 0.05 0.3 0.01 0.17815 117 0.0833 37.5 0.01512 0.15 0.3 0.005 0.26418 215 0.0872 38.5 0.01279 0.2 0.2 0.01 0.46814 
20 0.0194 5.0 0.00103 0.1 0.3 0.01 0.35253 118 0.097 40.0 0.01850 0.15 0.3 0.005 0.26418 216 0.0971 43.5 0.01596 0.2 0.2 0.01 0.46814 
21 0.0232 8.0 0.00145 0.1 0.3 0.01 0.35253 119 0.1065 45.5 0.02220 0.15 0.3 0.005 0.26418 217 0.1071 48.5 0.01947 0.2 0.2 0.01 0.46814 
22 0.0275 12.0 0.00216 0.1 0.3 0.01 0.35253 120 0.1189 50.0 0.02771 0.15 0.3 0.005 0.26418 218 0.1201 52.0 0.02283 0.2 0.2 0.01 0.46814 
23 0.0401 18.5 0.00409 0.1 0.3 0.01 0.35253 121 0.1251 52.0 0.03069 0.15 0.3 0.005 0.26418 219 0.1303 56.0 0.02654 0.2 0.2 0.01 0.46814 
24 0.0486 24.0 0.00619 0.1 0.3 0.01 0.35253 122 0.136 53.5 0.03376 0.15 0.3 0.005 0.26418 220 0.1351 58.5 0.02889 0.2 0.2 0.01 0.46814 
25 0.0583 28.0 0.00839 0.1 0.3 0.01 0.35253 123 0.1427 56.0 0.03951 0.15 0.3 0.005 0.26418 221 0.1461 62.0 0.03252 0.2 0.2 0.01 0.46814 
26 0.0706 32.0 0.01077 0.1 0.3 0.01 0.35253 124 0.152 58.0 0.04383 0.15 0.3 0.005 0.26418 222 0.1583 65.0 0.03763 0.2 0.2 0.01 0.46814 
27 0.0786 36.5 0.01395 0.1 0.3 0.01 0.35253 125 0.1617 60.5 0.04793 0.15 0.3 0.005 0.26418 223 0.1676 67.5 0.04089 0.2 0.2 0.01 0.46814 
28 0.0916 40.5 0.01765 0.1 0.3 0.01 0.35253 126 0.1711 63.5 0.05180 0.15 0.3 0.005 0.26418 224 0.1811 70.5 0.04553 0.2 0.2 0.01 0.46814 
29 0.1016 45.0 0.02165 0.1 0.3 0.01 0.35253 127 0.1772 66.0 0.05538 0.15 0.3 0.005 0.26418 225 0.0281 13.5 0.00306 0.05 0.2 0.005 0.0614 
30 0.1161 49.0 0.02741 0.1 0.3 0.01 0.35253 128 0.1921 72.0 0.06581 0.15 0.3 0.005 0.26418 226 0.0349 21.5 0.00505 0.05 0.2 0.005 0.0614 
31 0.1249 51.0 0.03069 0.1 0.3 0.01 0.35253 129 0.02 6.0 0.00103 0.2 0.3 0.005 0.36361 227 0.0393 27.5 0.00680 0.05 0.2 0.005 0.0614 
32 0.1303 54.5 0.03438 0.1 0.3 0.01 0.35253 130 0.0237 9.0 0.00142 0.2 0.3 0.005 0.36361 228 0.0498 29.5 0.00925 0.05 0.2 0.005 0.0614 
33 0.1364 56.0 0.03756 0.1 0.3 0.01 0.35253 131 0.0311 13.5 0.00243 0.2 0.3 0.005 0.36361 229 0.0571 34.0 0.01216 0.05 0.2 0.005 0.0614 
34 0.1481 57.5 0.04082 0.1 0.3 0.01 0.35253 132 0.0406 18.5 0.00381 0.2 0.3 0.005 0.36361 230 0.0681 39.0 0.01634 0.05 0.2 0.005 0.0614 
35 0.1501 60.0 0.04349 0.1 0.3 0.01 0.35253 133 0.051 23.0 0.00571 0.2 0.3 0.005 0.36361 231 0.0781 44.0 0.02037 0.05 0.2 0.005 0.0614 
36 0.1631 62.5 0.04968 0.1 0.3 0.01 0.35253 134 0.0616 27.0 0.00795 0.2 0.3 0.005 0.36361 232 0.0933 49.5 0.02654 0.05 0.2 0.005 0.0614 
37 0.1801 65.5 0.05575 0.1 0.3 0.01 0.35253 135 0.0696 30.5 0.01010 0.2 0.3 0.005 0.36361 233 0.1027 52.5 0.03130 0.05 0.2 0.005 0.0614 
38 0.1877 67.5 0.05979 0.1 0.3 0.01 0.35253 136 0.0816 34.5 0.01303 0.2 0.3 0.005 0.36361 234 0.1141 56.5 0.03821 0.05 0.2 0.005 0.0614 
39 0.1961 70.0 0.06505 0.1 0.3 0.01 0.35253 137 0.0941 39.0 0.01707 0.2 0.3 0.005 0.36361 235 0.1238 60.0 0.04349 0.05 0.2 0.005 0.0614 
40 0.0207 5.5 0.00103 0.15 0.3 0.01 0.5203 138 0.1091 44.5 0.02265 0.2 0.3 0.005 0.36361 236 0.1389 64.5 0.05322 0.05 0.2 0.005 0.0614 
41 0.0273 8.5 0.00163 0.15 0.3 0.01 0.5203 139 0.12 48.5 0.02683 0.2 0.3 0.005 0.36361 237 0.1479 67.0 0.05979 0.05 0.2 0.005 0.0614 
42 0.0385 15.0 0.00333 0.15 0.3 0.01 0.5203 140 0.1349 52.0 0.03252 0.2 0.3 0.005 0.36361 238 0.0176 5.0 0.00103 0.1 0.2 0.005 0.11703 
43 0.0503 20.5 0.00520 0.15 0.3 0.01 0.5203 141 0.1426 54.5 0.03628 0.2 0.3 0.005 0.36361 239 0.021 7.0 0.00127 0.1 0.2 0.005 0.11703 
44 0.0653 27.0 0.00818 0.15 0.3 0.01 0.5203 142 0.1544 57.0 0.04115 0.2 0.3 0.005 0.36361 240 0.0275 15.0 0.00247 0.1 0.2 0.005 0.11703 
45 0.0782 32.0 0.01141 0.15 0.3 0.01 0.5203 143 0.1649 58.5 0.04484 0.2 0.3 0.005 0.36361 241 0.0341 20.0 0.00364 0.1 0.2 0.005 0.11703 
46 0.0895 36.0 0.01452 0.15 0.3 0.01 0.5203 144 0.1668 63.0 0.04759 0.2 0.3 0.005 0.36361 242 0.0392 25.0 0.00486 0.1 0.2 0.005 0.11703 
47 0.1047 41.0 0.01940 0.15 0.3 0.01 0.5203 145 0.1916 66.0 0.05757 0.2 0.3 0.005 0.36361 243 0.0453 30.0 0.00649 0.1 0.2 0.005 0.11703 
48 0.1222 47.5 0.02539 0.15 0.3 0.01 0.5203 146 0.2065 71.0 0.06581 0.2 0.3 0.005 0.36361 244 0.0543 34.0 0.00857 0.1 0.2 0.005 0.11703 
49 0.1327 50.0 0.02954 0.15 0.3 0.01 0.5203 147 0.0181 3.5 0.00103 0.05 0.2 0.01 0.12177 245 0.061 41.0 0.01109 0.1 0.2 0.005 0.11703 
50 0.1386 52.5 0.03197 0.15 0.3 0.01 0.5203 148 0.0271 13.0 0.00243 0.05 0.2 0.01 0.12177 246 0.0751 46.0 0.01575 0.1 0.2 0.005 0.11703 
51 0.1441 54.0 0.03438 0.15 0.3 0.01 0.5203 149 0.0335 16.5 0.00362 0.05 0.2 0.01 0.12177 247 0.0901 49.0 0.02096 0.1 0.2 0.005 0.11703 
52 0.1550 56.5 0.03827 0.15 0.3 0.01 0.5203 150 0.0388 24.0 0.00485 0.05 0.2 0.01 0.12177 248 0.0971 52.5 0.02426 0.1 0.2 0.005 0.11703 
53 0.1623 58.5 0.04215 0.15 0.3 0.01 0.5203 151 0.0443 28.0 0.00631 0.05 0.2 0.01 0.12177 249 0.1073 55.0 0.02830 0.1 0.2 0.005 0.11703 
54 0.1713 60.0 0.04573 0.15 0.3 0.01 0.5203 152 0.0521 31.5 0.00811 0.05 0.2 0.01 0.12177 250 0.1163 58.0 0.03252 0.1 0.2 0.005 0.11703 
55 0.1771 62.0 0.04835 0.15 0.3 0.01 0.5203 153 0.057 34.0 0.00976 0.05 0.2 0.01 0.12177 251 0.1251 61.0 0.03628 0.1 0.2 0.005 0.11703 
56 0.1840 64.0 0.05194 0.15 0.3 0.01 0.5203 154 0.0625 37.5 0.01205 0.05 0.2 0.01 0.12177 252 0.1371 64.0 0.04149 0.1 0.2 0.005 0.11703 
57 0.1892 65.0 0.05430 0.15 0.3 0.01 0.5203 155 0.068 42.5 0.01437 0.05 0.2 0.01 0.12177 253 0.1466 68.5 0.04759 0.1 0.2 0.005 0.11703 
58 0.1933 66.5 0.05721 0.15 0.3 0.01 0.5203 156 0.0752 44.5 0.01736 0.05 0.2 0.01 0.12177 254 0.1711 75.5 0.06278 0.1 0.2 0.005 0.11703 
59 0.2003 68.0 0.05979 0.15 0.3 0.01 0.5203 157 0.084 47.0 0.02021 0.05 0.2 0.01 0.12177 255 0.0191 5.0 0.00103 0.15 0.2 0.005 0.18139 
60 0.2143 70.0 0.06735 0.15 0.3 0.01 0.5203 158 0.09 50.0 0.02300 0.05 0.2 0.01 0.12177 256 0.0234 10.0 0.00150 0.15 0.2 0.005 0.18139 
61 0.0222 6.5 0.00103 0.2 0.3 0.01 0.69174 159 0.0945 54.0 0.02426 0.05 0.2 0.01 0.12177 257 0.0285 17.0 0.00238 0.15 0.2 0.005 0.18139 
62 0.0260 9.0 0.00150 0.2 0.3 0.01 0.69174 160 0.104 57.0 0.02830 0.05 0.2 0.01 0.12177 258 0.0334 20.5 0.00327 0.15 0.2 0.005 0.18139 
63 0.0417 16.5 0.00348 0.2 0.3 0.01 0.69174 161 0.1142 60.5 0.03314 0.05 0.2 0.01 0.12177 259 0.041 25.0 0.00471 0.15 0.2 0.005 0.18139 
64 0.0573 22.5 0.00609 0.2 0.3 0.01 0.69174 162 0.1265 64.0 0.03918 0.05 0.2 0.01 0.12177 260 0.0485 29.0 0.00616 0.15 0.2 0.005 0.18139 
65 0.0700 27.0 0.00839 0.2 0.3 0.01 0.69174 163 0.1385 66.5 0.04553 0.05 0.2 0.01 0.12177 261 0.0555 33.0 0.00748 0.15 0.2 0.005 0.18139 
66 0.0831 30.0 0.01120 0.2 0.3 0.01 0.69174 164 0.15 69.5 0.05073 0.05 0.2 0.01 0.12177 262 0.063 36.5 0.00945 0.15 0.2 0.005 0.18139 
67 0.0913 34.5 0.01391 0.2 0.3 0.01 0.69174 165 0.1611 74.0 0.05794 0.05 0.2 0.01 0.12177 263 0.0725 40.0 0.01161 0.15 0.2 0.005 0.18139 
68 0.1067 40.0 0.01773 0.2 0.3 0.01 0.69174 166 0.174 77.0 0.06429 0.05 0.2 0.01 0.12177 264 0.0775 44.0 0.01386 0.15 0.2 0.005 0.18139 
69 0.1281 45.5 0.02375 0.2 0.3 0.01 0.69174 167 0.02 4.5 0.00103 0.1 0.2 0.01 0.23534 265 0.085 47.5 0.01596 0.15 0.2 0.005 0.18139 
70 0.1382 49.0 0.02942 0.2 0.3 0.01 0.69174 168 0.0242 6.5 0.00135 0.1 0.2 0.01 0.23534 266 0.0911 51.0 0.01933 0.15 0.2 0.005 0.18139 
71 0.1537 52.5 0.03438 0.2 0.3 0.01 0.69174 169 0.0298 14.0 0.00243 0.1 0.2 0.01 0.23534 267 0.1007 53.5 0.02251 0.15 0.2 0.005 0.18139 
72 0.1728 57.0 0.04215 0.2 0.3 0.01 0.69174 170 0.0375 19.0 0.00378 0.1 0.2 0.01 0.23534 268 0.111 57.0 0.02539 0.15 0.2 0.005 0.18139 
73 0.1772 60.0 0.04450 0.2 0.3 0.01 0.69174 171 0.0471 24.0 0.00548 0.1 0.2 0.01 0.23534 269 0.116 60.5 0.02830 0.15 0.2 0.005 0.18139 
74 0.1862 62.5 0.04891 0.2 0.3 0.01 0.69174 172 0.0536 28.0 0.00693 0.1 0.2 0.01 0.23534 270 0.1226 64.5 0.03069 0.15 0.2 0.005 0.18139 
75 0.2011 65.5 0.05408 0.2 0.3 0.01 0.69174 173 0.0601 31.5 0.00851 0.1 0.2 0.01 0.23534 271 0.1452 66.0 0.04016 0.15 0.2 0.005 0.18139 
76 0.2263 69.0 0.06658 0.2 0.3 0.01 0.69174 174 0.0671 36.0 0.01028 0.1 0.2 0.01 0.23534 272 0.155 68.0 0.04417 0.15 0.2 0.005 0.18139 
77 0.0162 5.0 0.00103 0.05 0.3 0.005 0.08984 175 0.075 40.5 0.01266 0.1 0.2 0.01 0.23534 273 0.1626 71.0 0.04759 0.15 0.2 0.005 0.18139 
78 0.0194 8.5 0.00150 0.05 0.3 0.005 0.08984 176 0.0839 43.0 0.01479 0.1 0.2 0.01 0.23534 274 0.1748 75.0 0.05394 0.15 0.2 0.005 0.18139 
79 0.0241 14.0 0.00251 0.05 0.3 0.005 0.08984 177 0.0871 46.5 0.01707 0.1 0.2 0.01 0.23534 275 0.1873 79.0 0.06203 0.15 0.2 0.005 0.18139 
80 0.0326 19.5 0.00453 0.05 0.3 0.005 0.08984 178 0.0991 49.5 0.02042 0.1 0.2 0.01 0.23534 276 0.0209 6.0 0.00103 0.2 0.2 0.005 0.23141 
81 0.0416 23.0 0.00639 0.05 0.3 0.005 0.08984 179 0.1074 53.0 0.02482 0.1 0.2 0.01 0.23534 277 0.0239 10.0 0.00142 0.2 0.2 0.005 0.23141 
82 0.0500 28.5 0.00909 0.05 0.3 0.005 0.08984 180 0.1136 56.5 0.02741 0.1 0.2 0.01 0.23534 278 0.0313 15.0 0.00241 0.2 0.2 0.005 0.23141 
83 0.0583 32.0 0.01263 0.05 0.3 0.005 0.08984 181 0.1222 60.0 0.03069 0.1 0.2 0.01 0.23534 279 0.0385 20.0 0.00349 0.2 0.2 0.005 0.23141 
84 0.0683 36.0 0.01655 0.05 0.3 0.005 0.08984 182 0.1291 64.5 0.03376 0.1 0.2 0.01 0.23534 280 0.049 28.5 0.00560 0.2 0.2 0.005 0.23141 
85 0.0790 37.5 0.02075 0.05 0.3 0.005 0.08984 183 0.1432 66.0 0.04016 0.1 0.2 0.01 0.23534 281 0.057 33.0 0.00740 0.2 0.2 0.005 0.23141 
86 0.0927 42.0 0.02539 0.05 0.3 0.005 0.08984 184 0.1533 69.5 0.04484 0.1 0.2 0.01 0.23534 282 0.065 36.5 0.00938 0.2 0.2 0.005 0.23141 
87 0.1016 45.5 0.02948 0.05 0.3 0.005 0.08984 185 0.1627 71.5 0.04898 0.1 0.2 0.01 0.23534 283 0.0745 40.5 0.01159 0.2 0.2 0.005 0.23141 
88 0.1132 48.5 0.03501 0.05 0.3 0.005 0.08984 186 0.1805 76.0 0.05831 0.1 0.2 0.01 0.23534 284 0.086 45.5 0.01475 0.2 0.2 0.005 0.23141 
89 0.1262 52.5 0.04182 0.05 0.3 0.005 0.08984 187 0.0209 5.0 0.00103 0.15 0.2 0.01 0.34907 285 0.096 51.0 0.01799 0.2 0.2 0.005 0.23141 
90 0.1354 54.5 0.04587 0.05 0.3 0.005 0.08984 188 0.0249 9.0 0.00145 0.15 0.2 0.01 0.34907 286 0.107 55.0 0.02282 0.2 0.2 0.005 0.23141 
91 0.1462 57.5 0.05109 0.05 0.3 0.005 0.08984 189 0.0323 15.0 0.00253 0.15 0.2 0.01 0.34907 287 0.1128 59.0 0.02596 0.2 0.2 0.005 0.23141 
92 0.1553 59.0 0.05684 0.05 0.3 0.005 0.08984 190 0.0425 20.0 0.00399 0.15 0.2 0.01 0.34907 288 0.1253 62.0 0.02948 0.2 0.2 0.005 0.23141 
93 0.1666 61.0 0.06203 0.05 0.3 0.005 0.08984 191 0.051 24.0 0.00526 0.15 0.2 0.01 0.34907 289 0.1348 67.0 0.03376 0.2 0.2 0.005 0.23141 
94 0.0171 7.5 0.00103 0.1 0.3 0.005 0.18025 192 0.0642 29.0 0.00767 0.15 0.2 0.01 0.34907 290 0.1415 69.0 0.03692 0.2 0.2 0.005 0.23141 
95 0.0205 12.5 0.00161 0.1 0.3 0.005 0.18025 193 0.0715 34.5 0.00996 0.15 0.2 0.01 0.34907 291 0.1548 71.0 0.04215 0.2 0.2 0.005 0.23141 
96 0.0272 15.5 0.00261 0.1 0.3 0.005 0.18025 194 0.0785 38.0 0.01190 0.15 0.2 0.01 0.34907 292 0.1659 73.0 0.04759 0.2 0.2 0.005 0.23141 
97 0.0349 20.0 0.00395 0.1 0.3 0.005 0.18025 195 0.0855 41.0 0.01402 0.15 0.2 0.01 0.34907 293 0.173 77.5 0.05180 0.2 0.2 0.005 0.23141 
98 0.0460 26.5 0.00659 0.1 0.3 0.005 0.18025 196 0.0924 44.0 0.01627 0.15 0.2 0.01 0.34907 294 0.1926 80.0 0.06053 0.2 0.2 0.005 0.23141 

Deflection angle, θ, as an independent variable (model I)

Discharge equation for plates installed in a horizontal channel (S = 0)

In this section, possible correlations between the dimensionless variables and their combinations are explored. The performance of the developed discharge relationships and the error associated with their application were also examined and reported.

For a hinged plate installed in a horizontal rectangular open channel (S = 0), considering a power-law relation one gets:
(20)
where ai (i = 1, 2–6) are numerical coefficients.

The power-law relation Equation (20) is based on assuming that the incomplete self-similarity concept can be applied (Barenblatt 1979, 1987). For the specific values of θ, L/B, b/B and t/B, when h/B → 0 then Q/(g0.5B2.5) → 0 and when h/B→0 then Q/(g0.5B2.5)→0 thus based on the incomplete self-similarity theory, the group h/B can be written as a power type expression. As coefficient a2 is larger than other coefficients (based on experimental data, h/B is a predominant variable) the power-law relation can also be applied for other dimensionless groups with fewer variations.

The numerical coefficients of Equation (20) can be determined by minimizing the summation of absolute relative errors of the discharges (Relative error (%) = 100 × (QmQcal)/Qm in which Qm and Qcal are respectively measured and calculated discharges). Minimizing the summation of the absolute relative errors between the observed (393 runs) and computed discharges leads to the following discharge equation:
(21)
in which the deflection angle, θ, is in degree. The average relative error of computed discharge using Equation (21) compared with the observed values is 2.02%. Equation (21) has a maximum error of 11.72% and for 93% of the measured discharge values, the relative errors are within ±5%.
The dimensionless discharge Q/(gB5)0.5 of the hinged plate depends primarily on the upstream dimensionless depth h/B and the deflection angle θ. The derived discharge relationship could be further simplified. According to Equation (21), the influence of L/B with a small value of power is less than other variables and this variable can be ignored without any significant loss in accuracy. Considering the quantities θ, h/B, b/B and t/B, and by minimizing the percentage errors between the observed and computed discharges, the following discharge relationship was obtained:
(22)

The average relative error of computed discharge using Equation (22) is less than 2.04%. The discharge Equation (22) has a maximum error less than 11.73%. In addition, for 93% of the measured discharge values, the relative errors are within ±5%. It worth noting that, by neglecting t/B, the average error reaches 3.18%.

A comparison between measured dimensionless discharges and the ones calculated by Equation (22), along with their relative errors, is shown in Figure 4. The figure promises a suitable relationship for determining the discharge based on the quantities θ, h/B, b/B and t/B. Based on experimental data analysis of current study, the plate length, L, has no effect on the accuracy of the discharge relationship of the hinged plate (Model I). Applying Equation (22) for the hinged plate installed in a sloping channel of S = 0.005 (294 runs), yields an average relative error of 19% with a maximum relative error of 43%. This shows that when the deflection angle is considered as an independent variable (Model I), the hydraulic behavior of the hinged plates installed in the horizontal open channel entirely differs from the hinged plates installed in the sloping open channel.
Figure 4

Comparison of observed dimensionless discharges with computed ones using proposed discharge equations for the plates along with their discharge error distributions: (a) Equation (22) for horizontal channel; (b) Equation (23) for sloping channel and (c) Equation (24) for both horizontal and sloping channels.

Figure 4

Comparison of observed dimensionless discharges with computed ones using proposed discharge equations for the plates along with their discharge error distributions: (a) Equation (22) for horizontal channel; (b) Equation (23) for sloping channel and (c) Equation (24) for both horizontal and sloping channels.

Close modal

Discharge equation for plates installed in a sloping channel (S = 0.005)

For the hinged plates installed in a sloping rectangular channel of S = 0.005, by minimizing the percentage errors between the observed (294 runs for the sloping open channel) and computed discharge, Equation (22) takes the form:
(23)

Equation (23) is a recalibration of Equation (22). The average relative error of computed discharge using Equation (23) compared with the observed values (294 runs) is 2.70%. Equation (23) has also a maximum relative error of 11.59%. In addition, for 87% of the measured discharge values, the relative errors are within ±5%. A comparison between measured dimensionless discharges and the ones calculated by Equation (23), along with their relative errors, is shown in Figure 4. According to the figure, as the slope of the channel increases, the accuracy of the proposed model slightly decreases.

General discharge equation for plates installed in horizontal and sloping channels (0 ≤ S ≤ 0.005)

Numerical coefficients of Equations (22) and (23) differ from each other. This indicates that these coefficients may be a function of S. For the hinged plates installed in sloping rectangular channels, Equation (22) of the horizontal open channels may be revised (using gradual linear coefficients) as:
(24)
where ai and bi (i = 1, 2 to 5) are empirical coefficients to be determined by experimental measurements. The empirical coefficients of Equation (24) are determined by minimizing the percentage errors between the observed (393 + 294 = 687 runs for both horizontal and sloping open channels) and computed discharges as:
(25)

For S = 0, general relation presented by Equation (25) reduces to Equation (22) of a horizontal rectangular channel while this equation reduces to Equation (23) of a sloping channel for S = 0.005. It is expected that unified Equation (25) which is based on the gradual linear coefficients will be valid for the range of 0 ≤ S ≤ 0.005.

The average relative error of computed discharge using Equation (25) compared with the observed values (687 runs) is 2.32%. Equation (25) has a maximum relative error of 11.73%. In addition, for 90% of the measured discharge values, the relative errors are within ±5%. As noted, for Model I, the effect of the plate length is insignificant for both horizontal and sloping open channels in the practical range of 0 ≤ S ≤ 0.005. A comparison between measured dimensionless discharges and the ones calculated by Equation (25) for all data set (687 runs), along with their relative errors, is shown in Figure 4.

Deflection angle, θ, as a dependent variable (model II)

Discharge equation for plates installed in a horizontal channel (S = 0)

In this case, the dimensionless mass, M/(ρb3), should be used instead of the deflection angle, θ. Since the first model carries more experimental information than the second model (due to the deflection angle), it expected that the first model will be more accurate. For a hinged plate installed in a horizontal rectangular open channel (S = 0), the functional relationship of the flow discharge can be considered in the following power-law form:
(26)
where ai (i = 1, 2 to 6) are numerical coefficients.
The general format of Equation (26) is similar to Equation (21) except for the last term. The numerical coefficients of Equation (26) are determined by minimizing the summation of the absolute relative errors of the flow discharges (393 runs) as:
(27)

The average relative error of computed discharge using Equation (27) compared with the observed values is 2.51%. Equation (27) has a maximum error of 14.86% and for 88% of the measured discharge values, the relative errors are within ±5%.

The derived discharge relationship could be further simplified. Based on Equation (27), the influence of L/B and t/B are less than other variables, and these variables can be ignored without any significant loss in accuracy. Considering the quantities M/(ρb3), h/B and b/B, and by minimizing the percentage errors between the observed and computed discharges, the following discharge relationship was obtained:
(28)
The average relative error of computed discharge using Equation (28) is less than 2.51%. The discharge Equation (28) has a maximum error less than 14.91%. In addition, for 88% of the measured discharge values, the relative errors are within ±5%. As noted, the first model is slightly more accurate than the second model. A comparison between measured dimensionless discharges (393 runs) and the ones calculated by Equation (28) along with their relative errors is shown in Figure 5. The trend line to the compiled data indicates good agreement.
Figure 5

Comparison of observed dimensionless discharges with computed ones using proposed discharge equations for the plates along with their discharge error distributions: (a) Equation (28) for horizontal channel; (b) Equation (30) for sloping channel and (c) Equation (32) for both horizontal and sloping channels.

Figure 5

Comparison of observed dimensionless discharges with computed ones using proposed discharge equations for the plates along with their discharge error distributions: (a) Equation (28) for horizontal channel; (b) Equation (30) for sloping channel and (c) Equation (32) for both horizontal and sloping channels.

Close modal

Applying Equation (28) for the hinged plate installed in a sloping channel of S = 0.005 (294 runs), yields an average relative error of 19.52% with a maximum relative error of 45.29%. Thus Equation (28) is not applicable for a sloping open channel of S = 0.005. This issue shows that hydraulic behaviors of the hinged plates installed in the horizontal and sloping open channels are different even when the deflection angle is considered as a dependent variable (Model II).

Discharge equation for plates installed in a sloping channel (S = 0.005)

Recalibrating Equation (28) for the hinged plates installed in a sloping rectangular channel of S = 0.005, (using 294 runs) yields:
(29)

The average relative error of computed discharges using Equation (29) compared with the observed values (294 runs) is 4.82%. Equation (29) has a maximum error of 27.34%. In addition, for 63% of the measured discharge values, the relative errors are within ±5%.

The accuracy of Equation (29) can be slightly improved by considering the ratio of t/B as the following:
(30)

Equation (30) has an average error of 4.10% with a maximum error less than 23.53% and for 70% of the measured discharge values, the relative errors are within ±5%. A comparison between measured dimensionless discharges (294 runs) and the ones calculated by Equation (30) along with their relative errors is shown in Figure 5. As noted, in case of sloping channels the first model is still more accurate than the second model.

General discharge equation for plates installed in horizontal and sloping channels (0 ≤ S ≤ 0.005)

For the hinged plates installed in sloping rectangular channels, using gradual linear coefficients, the following discharge equation can be considered:
(31)
where ai and bi (i = 1, 2 to 5) are empirical coefficients to be determined by experimental measurements. The empirical coefficients of Equation (31) are determined by minimizing the percentage errors between the observed (393 + 294 = 687 runs for both horizontal and sloping open channels) and computed discharges as:
(32)

For S = 0, Equation (32) reduces to Equation (28) of a horizontal rectangular channel while for S = 0.005 reduces to Equation (30) of a sloping rectangular channel. It is expected that Equation (32) which is based on the gradual linear coefficients will be valid for the range of 0 ≤ S ≤ 0.005.

The average relative error of computed discharge using Equation (32) compared with the observed values (687 runs) is 3.19%. Equation (32) has a maximum relative error of 23.53%. In addition, for 80% of the measured discharge values, the relative errors are within ±5%. A comparison between measured dimensionless discharges (687 runs) and the ones calculated by Equation (32), along with their relative errors, is shown in Figure 5.

General discharge equation for plates installed in horizontal and sloping channels (0 ≤ S ≤ 0.005) when plate mass is not known

For Modell II, by considering the plate mass, the effect of the plate length on the flow discharge was insignificant for both horizontal and sloping open channels Equation (32). The effect of the plate mass may be compensated by the plate length in Modell II. When plate mass is not known, using gradual linear coefficient, the following discharge equation could be considered for the hinged plates installed in horizontal and sloping rectangular open channels:
(33)
where ai and bi (i = 1, 2 to 5) are empirical coefficients to be determined by experimental measurements. The empirical coefficients of Equation (33) are determined using all data set (687 runs) as:
(34)
Equation (34) has an average relative error of 3.25% with a maximum relative error of 23.78% for all experimental data set (687 runs) obtained in this work. In addition, for 80% of the measured discharge values, the relative errors are within ±5%. A comparison between measured dimensionless discharges and those calculated by Equation (34), along with their relative errors, is shown in Figure 6. The figure clearly indicates that the dimensionless variable M/(ρb3) can be replaced by L/B in Equation (31) without any loss of accuracy.
Figure 6

Comparison of observed dimensionless discharges with computed ones using proposed discharge equations for the plates along with their discharge error distributions: (a) Equation (34) by applying S = 0 (horizontal channel); (b) Equation (34) by applying S = 0.005 (sloping channel) and (c) Equation (34) by applying S = 0 and S = 0.005 (horizontal and sloping channels).

Figure 6

Comparison of observed dimensionless discharges with computed ones using proposed discharge equations for the plates along with their discharge error distributions: (a) Equation (34) by applying S = 0 (horizontal channel); (b) Equation (34) by applying S = 0.005 (sloping channel) and (c) Equation (34) by applying S = 0 and S = 0.005 (horizontal and sloping channels).

Close modal

A novel water measuring structure termed top-hinged plate (plate flowmeter) was introduced to measure flow discharges in rectangular open channels. The flow through the portable top-hinged plates located at the middle of rectangular channels was investigated under free-flow regime. The plate is rectangular in shape and rotates around a horizontal rod connected to its top and bears numerous advantages over traditional structures, including ease of construction, its low costs, and prevention of sediment from accumulation. A comprehensive experimental program (687 runs for different configurations of the plate) was conducted to determine the hydraulic of the free flow characteristic of the top-hinged plate. Since most irrigation open channels operate under subcritical flow regime with a mild slope, the experiments of this study were performed for both horizontal and sloping channels. Experimental data gathered from different open-channel bed slopes make it possible to evaluate the effects produced by the bed slope on the discharge equation. Under free flow conditions, the discharge equations were deduced by applying the Buckingham's theorem and using collected experimental data.

Different approaches were followed in order to develop discharge equation for the plate based on dimensionless variables. The deflection angle of the top-hinged plate, θ, can be considered as either an independent variable (Model I) or a dependent variable (Model I). Based on experimental data analysis, by considering θ and M/(ρb3) respectively in Models I and II, the plate length L has no significant effect on the flow discharge. However, the effect of the plate length L may be significant when quantity M/(ρb3) is not available for Model II. While both Models I and II are accurate and efficient, the proposed general model by Equation (32), which is applicable for both horizontal and sloping rectangular channels, allows to measure flow discharge values without the need for measuring θ.

The proposed portable top-hinged plate for free flow conditions can only be used within the ranges of the calibrated dimensionless parameters. In practical conditions, submergence affects the flow rate measurement and free-flow relations are no longer valid. Obviously, rising downstream flow depth may result in submerged flow conditions and should be investigated thoroughly in the future, just as is done for other flow measurement structures such as sluice gates. For future study, experiments under submerged flow conditions may be carried out to evaluate the effects produced by the submergence conditions on the discharge relation.

The experimental facility provided by the Irrigation and Reclamation Engineering Department, University of Tehran, is highly acknowledged.

The authors received no financial support for the research, authorship, and/or publication of this article.

F. Gorgin: Constructing the devices, gathering the experimental data, investigation, analyzing the experimental data. Ali R. Vatankhah: Supervision, conceptualization, methodology (analyzing the experimental data), writing original draft preparation, Writing – Reviewing and editing.

All relevant data are included in the paper or its Supplementary Information.

The authors declare there is no conflict.

Barenblatt
G. I.
1979
Similarity, Self-Similarity and Intermediate Asymptotics
.
Consultants Bureau
,
New York, NY
,
USA
.
Barenblatt
G. I.
1987
Dimensional Analysis
.
Gordon & Breach, Science Publishers Inc.
,
Amsterdam
,
The Netherlands
.
Belaud
G.
,
Litrico
X.
,
Graaff
B. D.
&
Baume
J. P.
2008
Hydraulic modeling of an automatic upstream water level control gate for submerged flow conditions
.
Journal of Irrigation and Drainage Engineering
134
(
3
),
315
326
.
Bijankhan
M.
&
Ferro
V.
2018
Assessing stage-discharge relationships for circular overflow structure
.
Journal of Irrigation and Drainage Engineering
144
(
1
),
04017053
.
Burrows
R.
1986
The hydraulic characteristics of hinged flap gates
. In:
Smith, K. V. H. & Rycroft, D. W. (eds)
Hydraulic Design in Water Resources Engineering: Land Drainage
.
Springer
,
Berlin, Heidelberg, Germany
, pp.
271
280
.
Burrows
R.
,
Ockleston
G. A.
&
Ali
K. H. M.
1997
Flow estimation from flap-gate monitoring
.
Water and Environment Journal
11
(
5
),
346
355
.
Burt
C. M.
,
Angold
R.
,
Lehmkuhl
M.
&
Styles
S.
2001
Flap gate design for automatic upstream canal water level control
.
Journal of Irrigation and Drainage Engineering
127
(
2
),
84
91
.
Hoseini
P.
&
Vatankhah
A. R.
2021
Stage-discharge relationship for slide gates installed in partially full pipes
.
Flow Measurement and Instrumentation
77
,
101838
.
Litrico
X.
,
Belaud
G.
,
Baume
J. P.
&
Ribot-Bruno
J.
2005
Hydraulic modeling of an automatic upstream water-level control gate
.
Journal of Irrigation and Drainage Engineering
131
(
2
),
176
189
.
Raemy
F.
&
Hager
W. H.
1998
Hydraulic level control by hinged flap gate
.
Proceedings of the Institution of Civil Engineers-Water Maritime and Energy
130
(
2
),
95
103
.
Roth
A.
&
Hager
W. H.
1999
Underflow of standard sluice gate
.
Experiments in Fluids
27
(
4
),
339
350
.
Tariq
A. U. R.
&
Masood
M.
2001
Deflecting velocity rod for flow measurements in small channels
.
Journal of Irrigation and Drainage Engineering
127
(
5
),
311
317
.
Vatankhah
A. R.
2010
Flow measurement using circular sharp-crested weirs
.
Flow Measurement and Instrumentation
21
(
2
),
118
122
.
Vatankhah
A. R.
&
Ghaderinia
H.
2018
Semi-circular flap gate as a flow metering structure in circular channels
.
Flow Measurement and Instrumentation
64
,
28
38
.
Vatankhah
A. R.
&
Hoseini
P.
2020
Discharge equation for round gates in turnout pipes: dimensional analysis and theoretical approaches
.
Journal of Irrigation and Drainage Engineering
147
(
1
),
06020015
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).