This study investigates the spatio-temporal distribution and trends of seasonal rainfall for different meteorological sub-divisions (MSDs) of India using statistical analysis and the innovative trend analysis (ITA) method. The gridded dataset of daily rainfall for 120 years from 1901 to 2020 was obtained from the India Meteorological Department (IMD) and analysed using statistical results of mean rainfall, standard deviation, coefficient of variation, skewness, kurtosis, maximum seasonal rainfall, percent deviation of rainfall, number of rainy days, rainfall intensity, rainfall categorization, trend detection, and cross-correlation coefficients. The period was divided into three quad-decadal times (QDT) of 40 years each (i.e., 1901–1940: QDT1, 1941–1980: QDT2, and 1981–2020: QDT3). A general decrease in the number of rainfall events was observed in all the seasons except for a few MSDs of northwest India showing a rise throughout the pre-monsoon season in recent times (QDT3). Significant trends were detected using the ITA method in seasonal rainfall in nearly all the MSDs of India. Our findings are highlighting the qualitative and quantitative characteristics of seasonal rainfall dynamics at the MSDs level which will be useful for comprehending the rainfall dynamics as impacted by climate change and climate variability in India, and may further lead the policymakers and stakeholders for making the best use of available water resources.

  • Spatio-temporal distribution and performance of rainfall was explored.

  • Spatial variability in timeseries was identified.

  • Innovative trend analysis on rainfall was performed for each season to see the impact of climate change and climate variablity.

  • Number of rainy days and rainfall intensity was analysed for each season.

  • Findings highlight the qualitative and quantitative aspects of seasonal rainfall dynamics.

Graphical Abstract

Graphical Abstract
Graphical Abstract

Climate variability and climate change have changed rainfall dynamics all throughout the world (Thornton et al. 2014; Dilling et al. 2015). Determining the presence and magnitude of climate change is one of the most difficult climatological challenges. Scientists from all over the world have studied climate change and endeavoured to comprehend the trajectory of numerous climate indices (Ferreira et al. 2021; Teixeira et al. 2021). Exploring current trends in climate conditions using long-term meteorological data is critical for climate change research. A significant portion of identified trends have concentrated on temperature and precipitation indices, according to historical records of meteorological stations. Droughts and diminishing rainfall are likely to worsen as a result of the rising global average temperature over the last century (Dai et al. 2018). Extreme climatic events such as floods, droughts, heat, and cold waves have severe consequences on human and animal health, the environment, and the economy (Mall et al. 2011). One of the main implications of climate change is variation in rainfall quantities and distribution (Trenberth 2011), which demands immediate attention and rigorous research. Because rainfall is such an essential part of the water cycle, it's crucial to investigate noteworthy climate changes, especially fluctuations in rainfall intensity and distribution patterns, in different climatic, hydrological, meteorological, industrial, and agricultural studies around the world for sustainable planning and management of water resources, which necessitates a thorough understanding of long-term rainfall dynamics. The variability of the seasonal rainfall over India has been examined by many researchers in recent decades (Pant & Rupa Kumar 1997; Kripalani & Kulkarni 2001; Guhathakurta et al. 2014; Maurya & Singh 2016; Sahany et al. 2018; Fukushima et al. 2019). Several investigations have also been conducted in different geographical areas of the globe by many researchers to discuss the rainfall dynamics (Marumbwa et al. 2019; Sa'adi et al. 2019; Wang et al. 2020; Jonah et al. 2021). Numerous studies have examined the spatio-temporal dynamics of rainfall and its magnitude in hydrological and meteorological time series datasets at regional as well as country levels concerning climate change and extreme rainfall events in India (Kumar et al. 2010; Joshi et al. 2020; Malik & Kumar 2020; Sahoo et al. 2020). Patra et al. (2012) found a long-term non-significant reduction in monsoonal and annual rainfall, but an increase in post-monsoonal rainfall for Odisha state. Krishnakumar et al. (2009) analyzed Kerala's long-term rainfall data and reported a significant reduction in southwest monsoonal season rainfall and an increase in post-monsoonal season rainfall. Goswami et al. (2006) recorded a substantial rise in the magnitude and frequency of heavy monsoonal rainfall in Central India. Findings of Rajeevan et al. (2008) were consistent with those of Goswami et al. (2006) as they recorded a decline in moderate rainfall events, with significant variability in frequencies of severe rainfall events at inter-decadal and inter-annual time scale, that lead to massive risks of heavy floods in central India. Vittal et al. (2013) discovered a rise in spatially aggregated extreme rainfall events over India in the second half of the twentieth century; however, substantial variations in the pattern of extreme events were also observed during the pre- and post-1950 eras.

Rainfall affects agricultural production by influencing soil moisture and its availability to the crops, and influencing soil health by inducing soil erosion, land degradation, desertification, along with the power generation and industrial output of the region, thereby affecting the overall economy of the nation. Rainfall studies are of paramount importance, as they help to foresee the challenges which affect natural endowments and economic activities of that region. The temporal trends in rainfall are a climate change proxy. The spatio-temporal trends of rainfall must be identified and adopted as signs of climate change. Floods are exacerbated by heavy rainfall, while droughts are due to inadequate rainfall, resulting in decreased agricultural production. Several numerical modelling studies suggested that the upsurge in the frequency of extreme events with the inter-annual rainfall variability is extensively associated with the rising concentration of CO2. Trend analysis of historical rainfall data allows policymakers to gain insight into local rainfall characteristics at the regional level, assisting them in developing effective hydrological strategies to combat drought and reduce flood risk through proper water resources management. The economy, as well as food security of nations like India, are reliant on the amount and distribution of rainfall. So, the trend analysis of long-term rainfall is essential for the sustainable utilization and management of available water resources (Pingale et al. 2014; Datta & Das 2019). To do so, we used the innovative trend analysis (ITA) method, which is a new and dependable approach of trend detection that has been successfully applied to compute trends in climatic variables such as rainfall (Ay & Kisi 2015; Ahmad et al. 2018; Malik et al. 2019; Chauhan et al. 2022a, 2022b), streamflow (Diop et al. 2018; Malik et al. 2020a, 2020b), temperature (Alemu & Dioha 2020), drought variables (Mahajan & Dodamani 2015; Shiru et al. 2018), evaporation (Goroshi et al. 2017; Ghalami et al. 2021), and water quality parameters (Abaurrea et al. 2011; Al-Taani 2014) all over the world. However, the ITA approach has only been utilised in a few prior studies to find trends in a century-long time-series data of rainfall in India.

The rationale for using MSDs as an administrative region in this study is to acquire the spatio-temporal patterns of seasonal rainfall as in many parts of India; insufficient and anomalous rainfall is one of the major constraints to agricultural and other socio-economic activities. This research is needed to gain a better knowledge of rainfall dynamics, which will aid in assessing the altered precipitation pattern and trends across the study area, as well as detecting hotspots where the frequency of above and below normal rainfall categories is increasing. This could aid policymakers in locating probable drought and flood-prone areas at the micro-level, allowing for more effective resources management and rapid socio-economic decisions throughout the state. Furthermore, the MSDs level rainfall datasets utilised in this analysis span more than a century, which is a significant improvement over previous studies in India. In light of the abovementioned discussion, the aim of the presented work was to analyze the distribution pattern and trends of seasonal rainfall data of 120 years (1901–2020) for all 34 mainland MSDs of India. This research paper is divided into five sections. The data used and the study area are described in Section 2. Sections 3 and 4 deal with methodology, results, and discussion, respectively. Section 5 summarises the conclusions drawn from the study.

India is one of the largest countries in the world holding 7th position on area basis. It is situated north of the equator between a latitude of 8° 4′ N to 37° 6′ N and a longitude of 68° 7′ E to 97° 25′ E, having a total area of 329 million ha. The country has 36 meteorological sub-divisions (MSDs) monitored by India Meteorological Department (IMD) in which 34 MSDs are on the mainland whereas two MSDs are on islands (Figure 1). Daily rainfall measurements from a network of 6955 rain gauge stations across India were used to generate this high-resolution gridded data. This dense network of rain gauge stations is maintained not only by IMD but also by the state government agencies, academic and research organizations of India. Each rain gauge data undergoes two types of tests. The first is the verification of the location of the station and the second one is the quality control test of rainfall. During quality control, check for extreme value, duplicate station, typing, and coding errors, missing data, etc., are considered. The quality-controlled data are interpolated to the regular grids using the Shepard interpolation method (Shepard 1968) to prepare a gridded product (Pai et al. 2014) which is then archived at the National Data Centre, IMD, Pune.
Figure 1

Location map of study area showing meteorological sub-divisions of India based on SRTM DEM elevation.

Figure 1

Location map of study area showing meteorological sub-divisions of India based on SRTM DEM elevation.

Close modal
After independence in 1947, the urbanisation began to accelerate in India (Khan 2011). The Green Revolution was initiated in the 1960s in the country where modern methods and technologies in the industrial system were adapted for agriculture. Thus, high yielding variety of seeds, irrigation infrastructure, tractors, fertilisers, and pesticides were used to improve food production and reduce poverty and starvation throughout this time period. The Indian economy has risen significantly as a result of greater industrialisation during the 1980s (Nomura 2019), yet high-intensity agriculture during the green revolution was heavily reliant on pesticides and artificial fertilizers, particularly nitrogenous fertilizers. Since 1960, the global rate of nitrogen fertiliser application has amplified by many times (Tilman 1998; Davidson 2009). Since the green revolution, increasing urbanisation, industrialisation, and intensive agricultural operations have been blamed for shifting rainfall patterns and extreme events. Based on this context, we divided the 120-years period into three 40-year quad-decadal time (QDT) intervals for analysing rainfall dynamics: QDT1, QDT2, and QDT3, where QDT1 corresponds to the pre-urbanization era (1901–1940), QDT2 to the accelerated industrialization, urbanisation, and green revolution era (1941–1980), and QDT3 to the recent climate (1981–2020). The various steps followed during the processing of the dataset are described in Figure 2. The daily rainfall data from 1901 to 2020 (120-years) generated by IMD at 0.25° grid resolution, was overlaid on the MSDs shape file of India, and the zonal-statistical area-weighted average of the bound MSDs area was processed and used for the investigation in this study. Four meteorological seasons have been defined by IMD in India which are winter (January–February), pre-monsoon (March–May), summer monsoon (June–September), and post-monsoon (October–December). The temporal scale of the dataset was changed to a seasonal or quad-decadal temporal scale by cumulating the daily data over the desired time period for each MSDs based on the requirement. The seasonal rainfall data of each MSDs presented on the mainland were analyzed using basic statistical parameters involving standard deviation, mean, kurtosis, skewness, percent deviation of rainfall (PDR), coefficient of variation, correlation coefficient (CC), trend detection with ITA method, number of rainy days, and rainfall intensity. The final results and statistics thus obtained were then converted to different spatio-temporal maps and figures to illustrate the findings.
Figure 2

The schematic flow chart of the methodology.

Figure 2

The schematic flow chart of the methodology.

Close modal

Distribution pattern of rainfall

The normal seasonal rainfall for each MSD was calculated as mean rainfall (MR) by accounting for the average rainfall of the entire study period from 1901 to 2020. Likewise, MR for each season in all the MSDs was computed for QDT1, QDT2, and QDT3.

Percent deviation of rainfall (PDR) was used to compute the seasonal rainfall variation at each MSD throughout each QDT by expressing monsoon rainfall in terms of percent deviation from its long-term climatological mean value of 120 years. Positive PDR points toward above normal, while negative PDR depicts below normal rainfall (BNR), during that specific QDT.
(1)
where, PDR is the percent deviation of rainfall, is the seasonal rainfall of the MSDs during any QDT, and is the climatological long-term mean rainfall of 120 years (1901–2020) referred to as CLM120.

Variability of rainfall

The coefficient of variation (CV) is a statistical parameter measuring the difference between the mean value of the time series and the data points. Variability in the rainfall for each MSD throughout the study period of 120 years (1901–2020) was computed for each season using CV. A greater CV value indicates larger variability and vice versa. The values of CV were calculated as below:
(2)
here σ is the standard deviation of seasonal rainfall and μ is the mean of seasonal rainfall.

Categorization of rainfall

IMD have categorized seasonal rainfall over India into five classes depending upon the deviation from normal rainfall (Kothawale & Munot 1998), which are (i) large excess (+60% and above), (ii) excess (+20 to +59%), (iii) normal (−19 to +19%), (iv) deficient (−59 to −20%), and (v) large deficient (−60% and below). This categorization was done for the entire study period of 120 years to depict the spatio-temporal patterns of seasonal rainfall over India.

Number of rainy days and rainfall intensity

According to India Meteorological Department (2022), a rainy day has been defined as a day with rainfall of at least 2.5 mm received at any station. The average, maximum and minimum number of rainy days in all MSDs was calculated over the entire study period of 120 years during different seasons. To study the spatio-temporal changes in the amount of rainfall downpoured in a single day, rainfall events based on the daily rainfall intensity (RI) during monsoon seasons were classified as RI10 (2.5–10.0 mm), RI20 (10.1–20.0 mm), RI30 (20.1–30.0 mm), RI40 (30.1–40.0 mm), RI50 (40.1–50.0 mm) and RI50+ (50.1 mm and above). Deviation in the intensity of rainfall events (DRI) throughout the monsoon season at the MSDs level in different QDTs was also calculated for investigating spatio-temporal variation in different RI categories over a 120-year period.

Trends of rainfall

The graphical non-parametric ITA method (Şen 2012) was executed to detect the trends in rainfall time series. The ITA is capable of detecting monotonic and sub-trends in time series and also has the capability to detect the different types of trends in different time series’ periods by scrutiny of the ITA graphical figures (Pour et al. 2020). In ITA, assumptions like serial normality, autocorrelation, outliers, and data length are absent. The rainfall time series dataset was bifurcated into two equal portions from starting to end date, then both divided sub-series were organised in increasing order to conduct ITA. The first half of the series was placed on the X-axis of the Cartesian coordinate system, while the second half was placed on the Y-axis. The data on the 45° line (1:1) indicate that there is no trend in the time series. Data above the 45° line represents a rising trend, while data below the 45° line represents a declining trend. The ITA slope (ITAS) test was proposed by Şen (2017). Positive and negative ITAS values show increasing and decreasing trends in time series, respectively. In this study, the null hypothesis (no trend in the rainfall time series) was compared to the alternate hypothesis (there is a trend in the rainfall time series) at two distinct levels of significance (α), i.e., α=5% and α=1%.

Descriptive statistics and distribution of rainfall

Descriptive statistical parameters of rainfall include mean rainfall (MR), standard deviation (SD), skewness (SK), kurtosis (KU), and maximum seasonal rainfall (MSR) of different seasons for 34 inland MSDs of India throughout the study period of 120 years are briefed in Table 1. Mainland India, on average, received 3.5%, 11.0%, 75.3%, 10.2% rainfall during winter, pre-monsoon, monsoon, and post-monsoon seasons, respectively. Among different MSDs, the highest MR of 173.1 mm, 668.3 mm, 2,910.8 mm, and 490.8 mm was observed in Himachal Pradesh, Arunachal Pradesh, Konkan & Goa, and Kerala, whereas the lowest MR of 2.0 mm, 7.2 mm, 247.0 mm, and 9.2 mm was observed at Konkan & Goa, Saurashtra & Kachh, Jammu & Kashmir, and West Rajasthan during winter, pre-monsoon, monsoon and post-monsoon seasons, respectively. Among different MSDs, the maximum value of SD in seasonal rainfall of 79.4 mm, 202.9 mm, 498.6 mm, and 141.6 mm was observed at Himachal Pradesh, Arunachal Pradesh, Konkan & Goa, and Tamil Nadu & Puducherry, while the minimum value of SD of 4.2 mm, 14.3 mm, 89.2 mm and 13.3 mm was observed at Saurashtra & Kachh, West Madhya Pradesh, Tamil Nadu & Puducherry, and West Rajasthan during winter, pre-monsoon, monsoon and post-monsoon seasons, individually. All MSDs have indicated positively skewed rainfall during winter, pre-monsoon, and post-monsoon seasons, whereas slightly negative skewness was observed in West Uttar Pradesh, East Madhya Pradesh, and Konkan & Goa during monsoon season.

Table 1

Descriptive statistics of seasonal rainfall in different meteorological sub-divisions of India during 1901–2020

MSD no.MSD nameWinter
Pre-monsoon
Monsoon
Post-monsoon
μσSKKUMXRμσSKKUMXRμσSKKUMXRμσSKKUMXR
Arunachal Pradesh 105 47.5 0.5 0.3 239.5 (1917) 668.3 203 0.3 −0.2 1,149.4 (1977) 1,820.2 425.9 0.7 0.4 3,209.9 (1938) 196.9 91.6 0.7 1.3 558.7 (1979) 
Assam & Meghalaya 49.1 26 1.3 4.1 177.7 (1993) 588.4 132 0.4 0.4 1,017.7 (2010) 1,577.3 224.7 1.1 3.3 2,611.3 (1974) 174.3 68.1 0.3 −0.2 382.3 (1986) 
Nagaland, Manipur, Mizoram & Tripura 44.7 29.9 1.7 5.7 201.7 (1993) 454.2 125 0.2 0.2 821.7 (1991) 1,189 147.3 0.6 1.4 1,767.2 (2017) 169.9 71.5 0.5 −0.2 356.2 (1986) 
Sub-Himalayan West Bengal & Sikkim 34.9 24.4 1.3 2.5 141.9 (1990) 427 103 0.4 0.3 722.3 (2010) 2,164.8 291 0.1 0.2 2,958.2 (1998) 158.3 93.3 1.3 2.4 552.5 (1929) 
Gangetic West Bengal 35.3 30.2 1.5 3.8 180.5 (1906) 191.2 73.1 0.6 0.7 423.1 (1981) 1,098.7 191.1 0.5 0.2 1,676.4 (1962) 140.3 83.2 0.9 0.4 366.4 (1959) 
Odisha 33.5 28.7 1.4 2.1 128.9 (1961) 125.3 54.9 1.5 4.1 364.4 (1995) 1,134 148.8 0.2 0.3 1,560 (2006) 161.3 90.6 0.5 −0.2 429.3 (2013) 
Jharkhand 39.2 31.8 1.4 2.4 166.3 (1906) 96.3 41.5 0.6 0.2 230.3 (2020) 1,077.2 158.5 0.1 −0 1,471.4 (1971) 100.7 67.8 1.1 0.8 302.3 (1929) 
Bihar 26.7 20.4 0.8 −0.2 82.4 (1957) 89.8 37.6 0.3 0.1 215.2 (1971) 1,032.8 176.6 0.1 0.2 1,563.6 (1987) 76.2 62 1.3 1.1 300.7 (1929) 
10 East Uttar Pradesh 31.9 22.8 1.5 111.7 (1942) 35.5 22.8 1.1 0.9 103.1 (1913) 881.6 181.8 0.4 0.8 1,461.5 (1936) 52.9 50.9 1.9 5.4 309.5 (1903) 
11 West Uttar Pradesh 36.8 26 0.9 0.5 128.2 (1928) 31.7 22.9 1.3 1.5 111.6 (1982) 751.9 172.5 −0 −0 1,190.6 (1936) 40.9 47.6 2.1 4.2 214.9 (1960) 
12 Uttarakhand 118 59.6 1.8 371.6 (1968) 150.7 68.9 0.6 −0.5 314.3 (1983) 1,138.1 225.5 0.3 0.1 1,679.7 (1921) 70.5 65.3 2.4 7.2 395.4 (1956) 
13 Haryana, Chandigarh & New Delhi 37.9 25.3 0.8 0.3 121.3 (1954) 38.6 29.1 1.7 3.9 171.1 (1982) 479.6 138.8 0.3 −0 822.2 (1917) 25.4 29.8 2.5 7.8 173.2 (1956) 
14 Punjab 54.7 30.9 0.5 −0.5 139 (1954) 53.9 35 1.5 3.1 197 (1982) 489.6 146.9 0.8 1.1 1,048 (1988) 31.9 42.2 5.3 40 380.5 (1955) 
15 Himachal Pradesh 173 79.4 1.4 491.3 (2005) 218.6 90.9 1.2 2.5 580.4 (1982) 779 189.8 0.2 −0 1,281 (1950) 85.3 64.7 1.8 4.6 377.8 (1955) 
16 Jammu & Kashmir 146 75.7 1.4 3.5 496.6 (1950) 219 102 1.4 1.9 576.4 (1986) 247 109.1 1.6 2.7 641.2 (2006) 79.4 57.9 1.6 3.2 309.5 (1986) 
17 West Rajasthan 8.4 8.8 1.5 1.6 37.8 (1906) 18 16.4 1.8 3.4 79 (1982) 264 104.6 0.7 0.9 614.6 (1917) 9.2 13.3 2.8 74.1 (1917) 
18 East Rajasthan 12.1 11.4 1.3 1.3 51.4 (1915) 18.3 16.9 2.1 6.2 106.2 (1917) 620 156.4 0.1 0.5 1,155.1 (1917) 23.9 28 2.1 5.8 165.9 (1956) 
19 West Madhya Pradesh 16 15.1 1.3 0.8 62.7 (2014) 16 14.3 1.8 3.7 71.7 (2015) 886.1 173.7 0.5 1,374.3 (1973) 47.4 42.4 1.2 178.8 (1997) 
20 East Madhya Pradesh 38.3 30.7 1.2 1.6 158.6 (1919) 31.5 26.1 1.6 2.7 134.9 (1926) 1,065.1 188.9 −0 −0 1,462.3 (1994) 59.5 48 1.1 237.7 (1997) 
21 Gujarat region 5.3 4.2 26 42.5 (1920) 8.6 14.9 3.6 17 105.9 (1917) 893.5 264.1 −1 1,574.3 (1976) 31 36.7 2.1 6.2 222.3 (1917) 
22 Saurashtra & Kachh 2.4 4.2 2.6 7.6 23.9 (1906) 7.2 16.1 4.3 20 111.6 (1933) 504.3 210.3 0.5 0.2 1,130.4 (2011) 23.1 34.3 2.6 8.1 204.5 (1917) 
23 Konkan & Goa 4.2 3.3 12 24.8 (1926) 44.5 47.4 2.2 5.6 273.3 (1918) 2,910.8 498.6 −0 0.6 4,538.5 (2019) 153.3 94.7 1.3 2.6 552 (1931) 
24 Madhya Maharashtra 4.7 7.6 10 41.3 (1941) 34.6 23.3 0.3 104.3 (1961) 655.4 132.1 0.2 0.5 1,058.9 (1962) 101.7 57.9 0.6 −0.2 269.2 (1931) 
25 Marathwada 10.3 12.9 1.9 3.9 66.7 (1926) 32.3 25.6 1.6 3.1 139.7 (1990) 688.2 168.2 0.5 1,202 (1988) 90.8 58.1 0.7 0.1 250.9 (2019) 
26 Vidarbha 22.6 22.9 1.4 1.5 101.1 (1919) 33.9 27.3 1.6 3.3 158.6 (1937) 991.6 181.2 0.1 −0 1,531.3 (1959) 75.7 50.5 0.8 0.9 273.5 (1931) 
27 Chhattisgarh 31.4 29.1 1.8 4.3 157.7 (1901) 59.2 34.6 1.2 1.6 185.1 (1926) 1,194.4 164.6 0.3 0.7 1,702.1 (1994) 83.1 51.1 0.7 −0.1 218.4 (1931) 
28 Coastal Andhra Pradesh 20.8 22.4 1.7 3.4 118.7 (1936) 90.1 60.7 3.2 17 500.6 (1990) 577.1 113.8 0.2 −1 837.8 (2010) 326.1 114.8 0.1 −0.5 569.9 (2010) 
29 Telangana 15 17.2 1.8 3.9 86 (1901) 61.1 33.2 1.5 3.2 207.9 (1990) 768.6 159.9 0.4 −0 1,232.4 (1988) 116.8 65.8 0.6 −0.1 310.3 (1995) 
30 Rayalaseema 13.2 17.4 3.6 80 (1906) 75.6 36.4 1.3 2.4 217.6 (1943) 386 106.2 1.1 734.2 (2007) 247.1 93.9 0.4 0.1 499.6 (2015) 
31 Tamil Nadu & Puducherry 39 40 1.5 1.7 181.7 (1984) 128.3 49.4 0.9 307.1 (1943) 341.4 89.2 1.5 8.2 829.9 (2011) 463.6 141.6 0.1 −0.2 834.9 (2005) 
32 Coastal Karnataka 4.3 7.4 2.8 8.8 42.6 (2010) 162.9 96.6 1.6 3.2 572.7 (1961) 2,620.5 463.6 0.7 2.1 4,524.2 (1961) 261.8 95.9 0.5 −0.2 510.6 (2019) 
33 North Interior Karnataka 8.3 1.8 2.5 35 (2010) 76.2 34.2 0.9 0.6 198.4 (1962) 483.7 104.1 0.3 −0 757.4 (2020) 129.5 67.9 0.9 1.8 408.1 (1916) 
34 South Interior Karnataka 7.3 9.3 44.5 (1928) 138.4 43.5 0.4 −0.5 244.2 (2004) 568.3 109.6 −0 817.7 (2011) 200.6 74.1 0.2 −0.5 381.3 (1956) 
35 Kerala 32.4 26.1 1.1 0.9 130.7 (1943) 336.1 122 1.2 1.5 752.6 (1933) 1,805.7 368.5 0.5 1.7 3,199.6 (1924) 490.8 126.7 −0.4 772.9 (2010) 
 Mainland India 39.3 13.4 0.2 −0.4 73.3 (1901) 122.5 20.6 0.7 0.8 201.6 (1990) 842 78 −0 −1 1,015.5 (1914) 114.2 31.9 0.3 −0.3 204.8 (1956) 
MSD no.MSD nameWinter
Pre-monsoon
Monsoon
Post-monsoon
μσSKKUMXRμσSKKUMXRμσSKKUMXRμσSKKUMXR
Arunachal Pradesh 105 47.5 0.5 0.3 239.5 (1917) 668.3 203 0.3 −0.2 1,149.4 (1977) 1,820.2 425.9 0.7 0.4 3,209.9 (1938) 196.9 91.6 0.7 1.3 558.7 (1979) 
Assam & Meghalaya 49.1 26 1.3 4.1 177.7 (1993) 588.4 132 0.4 0.4 1,017.7 (2010) 1,577.3 224.7 1.1 3.3 2,611.3 (1974) 174.3 68.1 0.3 −0.2 382.3 (1986) 
Nagaland, Manipur, Mizoram & Tripura 44.7 29.9 1.7 5.7 201.7 (1993) 454.2 125 0.2 0.2 821.7 (1991) 1,189 147.3 0.6 1.4 1,767.2 (2017) 169.9 71.5 0.5 −0.2 356.2 (1986) 
Sub-Himalayan West Bengal & Sikkim 34.9 24.4 1.3 2.5 141.9 (1990) 427 103 0.4 0.3 722.3 (2010) 2,164.8 291 0.1 0.2 2,958.2 (1998) 158.3 93.3 1.3 2.4 552.5 (1929) 
Gangetic West Bengal 35.3 30.2 1.5 3.8 180.5 (1906) 191.2 73.1 0.6 0.7 423.1 (1981) 1,098.7 191.1 0.5 0.2 1,676.4 (1962) 140.3 83.2 0.9 0.4 366.4 (1959) 
Odisha 33.5 28.7 1.4 2.1 128.9 (1961) 125.3 54.9 1.5 4.1 364.4 (1995) 1,134 148.8 0.2 0.3 1,560 (2006) 161.3 90.6 0.5 −0.2 429.3 (2013) 
Jharkhand 39.2 31.8 1.4 2.4 166.3 (1906) 96.3 41.5 0.6 0.2 230.3 (2020) 1,077.2 158.5 0.1 −0 1,471.4 (1971) 100.7 67.8 1.1 0.8 302.3 (1929) 
Bihar 26.7 20.4 0.8 −0.2 82.4 (1957) 89.8 37.6 0.3 0.1 215.2 (1971) 1,032.8 176.6 0.1 0.2 1,563.6 (1987) 76.2 62 1.3 1.1 300.7 (1929) 
10 East Uttar Pradesh 31.9 22.8 1.5 111.7 (1942) 35.5 22.8 1.1 0.9 103.1 (1913) 881.6 181.8 0.4 0.8 1,461.5 (1936) 52.9 50.9 1.9 5.4 309.5 (1903) 
11 West Uttar Pradesh 36.8 26 0.9 0.5 128.2 (1928) 31.7 22.9 1.3 1.5 111.6 (1982) 751.9 172.5 −0 −0 1,190.6 (1936) 40.9 47.6 2.1 4.2 214.9 (1960) 
12 Uttarakhand 118 59.6 1.8 371.6 (1968) 150.7 68.9 0.6 −0.5 314.3 (1983) 1,138.1 225.5 0.3 0.1 1,679.7 (1921) 70.5 65.3 2.4 7.2 395.4 (1956) 
13 Haryana, Chandigarh & New Delhi 37.9 25.3 0.8 0.3 121.3 (1954) 38.6 29.1 1.7 3.9 171.1 (1982) 479.6 138.8 0.3 −0 822.2 (1917) 25.4 29.8 2.5 7.8 173.2 (1956) 
14 Punjab 54.7 30.9 0.5 −0.5 139 (1954) 53.9 35 1.5 3.1 197 (1982) 489.6 146.9 0.8 1.1 1,048 (1988) 31.9 42.2 5.3 40 380.5 (1955) 
15 Himachal Pradesh 173 79.4 1.4 491.3 (2005) 218.6 90.9 1.2 2.5 580.4 (1982) 779 189.8 0.2 −0 1,281 (1950) 85.3 64.7 1.8 4.6 377.8 (1955) 
16 Jammu & Kashmir 146 75.7 1.4 3.5 496.6 (1950) 219 102 1.4 1.9 576.4 (1986) 247 109.1 1.6 2.7 641.2 (2006) 79.4 57.9 1.6 3.2 309.5 (1986) 
17 West Rajasthan 8.4 8.8 1.5 1.6 37.8 (1906) 18 16.4 1.8 3.4 79 (1982) 264 104.6 0.7 0.9 614.6 (1917) 9.2 13.3 2.8 74.1 (1917) 
18 East Rajasthan 12.1 11.4 1.3 1.3 51.4 (1915) 18.3 16.9 2.1 6.2 106.2 (1917) 620 156.4 0.1 0.5 1,155.1 (1917) 23.9 28 2.1 5.8 165.9 (1956) 
19 West Madhya Pradesh 16 15.1 1.3 0.8 62.7 (2014) 16 14.3 1.8 3.7 71.7 (2015) 886.1 173.7 0.5 1,374.3 (1973) 47.4 42.4 1.2 178.8 (1997) 
20 East Madhya Pradesh 38.3 30.7 1.2 1.6 158.6 (1919) 31.5 26.1 1.6 2.7 134.9 (1926) 1,065.1 188.9 −0 −0 1,462.3 (1994) 59.5 48 1.1 237.7 (1997) 
21 Gujarat region 5.3 4.2 26 42.5 (1920) 8.6 14.9 3.6 17 105.9 (1917) 893.5 264.1 −1 1,574.3 (1976) 31 36.7 2.1 6.2 222.3 (1917) 
22 Saurashtra & Kachh 2.4 4.2 2.6 7.6 23.9 (1906) 7.2 16.1 4.3 20 111.6 (1933) 504.3 210.3 0.5 0.2 1,130.4 (2011) 23.1 34.3 2.6 8.1 204.5 (1917) 
23 Konkan & Goa 4.2 3.3 12 24.8 (1926) 44.5 47.4 2.2 5.6 273.3 (1918) 2,910.8 498.6 −0 0.6 4,538.5 (2019) 153.3 94.7 1.3 2.6 552 (1931) 
24 Madhya Maharashtra 4.7 7.6 10 41.3 (1941) 34.6 23.3 0.3 104.3 (1961) 655.4 132.1 0.2 0.5 1,058.9 (1962) 101.7 57.9 0.6 −0.2 269.2 (1931) 
25 Marathwada 10.3 12.9 1.9 3.9 66.7 (1926) 32.3 25.6 1.6 3.1 139.7 (1990) 688.2 168.2 0.5 1,202 (1988) 90.8 58.1 0.7 0.1 250.9 (2019) 
26 Vidarbha 22.6 22.9 1.4 1.5 101.1 (1919) 33.9 27.3 1.6 3.3 158.6 (1937) 991.6 181.2 0.1 −0 1,531.3 (1959) 75.7 50.5 0.8 0.9 273.5 (1931) 
27 Chhattisgarh 31.4 29.1 1.8 4.3 157.7 (1901) 59.2 34.6 1.2 1.6 185.1 (1926) 1,194.4 164.6 0.3 0.7 1,702.1 (1994) 83.1 51.1 0.7 −0.1 218.4 (1931) 
28 Coastal Andhra Pradesh 20.8 22.4 1.7 3.4 118.7 (1936) 90.1 60.7 3.2 17 500.6 (1990) 577.1 113.8 0.2 −1 837.8 (2010) 326.1 114.8 0.1 −0.5 569.9 (2010) 
29 Telangana 15 17.2 1.8 3.9 86 (1901) 61.1 33.2 1.5 3.2 207.9 (1990) 768.6 159.9 0.4 −0 1,232.4 (1988) 116.8 65.8 0.6 −0.1 310.3 (1995) 
30 Rayalaseema 13.2 17.4 3.6 80 (1906) 75.6 36.4 1.3 2.4 217.6 (1943) 386 106.2 1.1 734.2 (2007) 247.1 93.9 0.4 0.1 499.6 (2015) 
31 Tamil Nadu & Puducherry 39 40 1.5 1.7 181.7 (1984) 128.3 49.4 0.9 307.1 (1943) 341.4 89.2 1.5 8.2 829.9 (2011) 463.6 141.6 0.1 −0.2 834.9 (2005) 
32 Coastal Karnataka 4.3 7.4 2.8 8.8 42.6 (2010) 162.9 96.6 1.6 3.2 572.7 (1961) 2,620.5 463.6 0.7 2.1 4,524.2 (1961) 261.8 95.9 0.5 −0.2 510.6 (2019) 
33 North Interior Karnataka 8.3 1.8 2.5 35 (2010) 76.2 34.2 0.9 0.6 198.4 (1962) 483.7 104.1 0.3 −0 757.4 (2020) 129.5 67.9 0.9 1.8 408.1 (1916) 
34 South Interior Karnataka 7.3 9.3 44.5 (1928) 138.4 43.5 0.4 −0.5 244.2 (2004) 568.3 109.6 −0 817.7 (2011) 200.6 74.1 0.2 −0.5 381.3 (1956) 
35 Kerala 32.4 26.1 1.1 0.9 130.7 (1943) 336.1 122 1.2 1.5 752.6 (1933) 1,805.7 368.5 0.5 1.7 3,199.6 (1924) 490.8 126.7 −0.4 772.9 (2010) 
 Mainland India 39.3 13.4 0.2 −0.4 73.3 (1901) 122.5 20.6 0.7 0.8 201.6 (1990) 842 78 −0 −1 1,015.5 (1914) 114.2 31.9 0.3 −0.3 204.8 (1956) 

Where, μ, mean seasonal rainfall (mm); σ, Standard Deviation (mm); MXR, Maximum Rainfall (mm; Year); PNR, Percent Normal Rainfall (%).

Figure 3 depicts the spatio-temporal variation of MR at the MSDs level in India during different seasons. In the entire country, QDT1 had received the highest winter MR, followed by QDT2 and QDT3. Among MSDs, the higher amount of rainfall was observed in the MSDs lying in the north-west regions of India viz: Himachal Pradesh, Uttarakhand, Jammu & Kashmir, Punjab, and Haryana, whereas the lowest amount of MR during all the QDTs was observed in the MSDs lying in the western region of the country, i.e., Konkan & Goa, Saurashtra & Kachh, Gujarat region, Madhya Maharashtra, Coastal Karnataka, North Interior Karnataka, South Interior Karnataka, and Marathwada, West Rajasthan, etc. The moving upper air troughs towards the east in the sub-tropical westerlies usually extend down to the lower troposphere of Northern India as western disturbances (WDs), which play an important role in winter rainfall, specifically over the regions lying in Indo-Gangetic plains (Pisharoty & Desai 1956; Dimri & Niyogi 2012; Yadav et al. 2012).
Figure 3

The long-term distribution of mean rainfall (mm per season) presented in QDT1 (a), QDT2 (b), QDT3 (c) and CLM120 (d) and seasons viz: winter season (JF; row 1st), pre-monsoon season (MAM; row 2nd), monsoon season (JJAS; row 3rd) and post-monsoon season (OND; row 4th) in the meteorological sub-divisions of India.

Figure 3

The long-term distribution of mean rainfall (mm per season) presented in QDT1 (a), QDT2 (b), QDT3 (c) and CLM120 (d) and seasons viz: winter season (JF; row 1st), pre-monsoon season (MAM; row 2nd), monsoon season (JJAS; row 3rd) and post-monsoon season (OND; row 4th) in the meteorological sub-divisions of India.

Close modal

During the pre-monsoon season, QDT3 had the highest MR in the country, followed by QDT2 and QDT1, respectively. Arunachal Pradesh, Assam & Meghalaya, Manipur, Mizoram, Nagaland, & Tripura, and Sub-Himalayan West Bengal & Sikkim witnessed the highest MR, while the lowest MR was observed at Saurashtra & Kachh, Gujarat region, West Madhya Pradesh, and West Rajasthan in the pre-monsoon season. The formation of semi-permanent heat lows in northwest Indian and adjoining Pakistan during the summer months, driven by deep convective activity and thunderstorms results in pre-monsoon rainfall (Sadhukhan et al. 2000; Sathiyamoorthy et al. 2010; Sinha et al. 2019).

During the summer monsoon season in India, QDT2 received the highest MR, followed by QDT3 and QDT1, respectively. Among MSDs, Konkan & Goa, Coastal Karnataka, Sub-Himalayan West Bengal, Arunachal Pradesh, Kerala, and Assam & Meghalaya observed the highest MR, however, Jammu & Kashmir and West Rajasthan received the lowest MR in the summer monsoon season. This can be attributed to the increasing distance of the inland MSDs from the source of moisture. The Western Ghats and northeast India are favoured location of the Tropical Convergence Zone (TCZ), with mean maximum precipitation during the monsoon season (Sikka & Gadgil 1980). It is expected that the convection over the equatorial Indian Ocean is critical for the monsoon because of the contribution by the northward propagations of tropical convergence zones that occurred in this district to the monsoon rainfall over India (Sikka & Gadgil 1980; Kumar et al. 1992; Gadgil 2003). Nevertheless, convection over the equatorial Indian Ocean can likewise be unfavourable due to the competition between the continental and oceanic TCZ (Gadgil 2003). The primary reason for high precipitation over the mountainous regions could be attributed to the strong orographic convection, which undergoes a diurnal cycle in which these mesoscale mountains play an important role (Xie et al. 2006).

Similarly, QDT2 had witnessed the highest MR in India during the post-monsoon season, followed by QDT1 and QDT3, respectively. Among MSDs, Kerala, Tamil Nadu & Puducherry, Coastal Andhra Pradesh, and Coastal Karnataka observed the highest MR, however, West Rajasthan, Saurashtra & Kachh, East Rajasthan, Haryana, Chandigarh & Delhi, Gujarat region, and Punjab received the lowest MR in the post-monsoon season. The major rainfall season over south peninsular India is the post-monsoon season (Dhar & Rakhecha 1983; Prasanna & Yasunari 2008), which is beneficial for agricultural production in this district (Kumar et al. 2007). Approximately 50% of the rainfall is annually received by the southeastern tip of the Indian peninsula in the post-monsoon season (Prasanna & Yasunari 2008). Cyclones developed during the post-monsoon season are another peculiar climatic feature over the southern peninsula due to the influence of the Bay of Bengal (Singh et al. 2001; Krishnakumar et al. 2009).

Rainfall deviation

Figure 4 depicts the spatio-temporal variation of PDR at the MSDs level in different QDTs against CLM120 for all seasons. The positive value of PDR is indicative of above normal rainfall (ANR) while negative values depict below normal rainfall (BNR). It is evident from the figure that most of the MSDs lying in western and peninsular India during winters and MSDs lying in central India during post-monsoon season received the above-normal rainfall in QDT1. The negative PDR was observed during QDT2 in the MSDs lying in peninsular and western India in winter and pre-monsoon seasons, respectively. Post-monsoon season rainfall shows an increasing trend in the MSDs lying in trans-Gangetic plains during the QDT2. PDR during the QDT3 portrays the declining trend of rainfall in most of the MSDs in the winter season and the rising trend in the pre-monsoon season. In general, none of the three QDTs showed a synchronised trend of deviation in any specific season. Monsoon season rainfall has shown slightly negative rainfall deviation in a few MSDs lying in western, central, and northeast India in QDT3. Overall, we can infer that rainfall is declining during the winter, monsoon, and post-monsoon seasons, while rising in the pre-monsoon season in recent times in QDT3.
Figure 4

The long-term percent rainfall deviation (%) in QDT1 (a), QDT2 (b) and QDT3 (c) from CLM120, and season viz: winter season (JF; row 1st), pre-monsoon season (MAM; row 2nd), monsoon season (JJAS; row 3rd) and post-monsoon season (OND; row 4th) in the Meteorological Sub-Divisions of India.

Figure 4

The long-term percent rainfall deviation (%) in QDT1 (a), QDT2 (b) and QDT3 (c) from CLM120, and season viz: winter season (JF; row 1st), pre-monsoon season (MAM; row 2nd), monsoon season (JJAS; row 3rd) and post-monsoon season (OND; row 4th) in the Meteorological Sub-Divisions of India.

Close modal

A negative PDR observed during QDT3 in the winter season, particularly in the MSDs lying in northwest India is in conformity with the studies of Pant et al. (1999), Kumar & Jain (2010), and Kumar et al. (2015), showing decreasing trends in winter rainfall over various parts of India which may be due to the significant decreasing frequencies of western disturbances (WDs) over the region. A positive PDR observed during QDT3 in the pre-monsoon season in the MSDs lying in northwest India might be due to extreme heat lows and resultant rainfall (Das et al. 2002; Chandrasekar 2010; Kumar et al. 2010). A negative PDR observed in the MSDs lying in Indo-Gangetic plains during QDT3 in the monsoon season is in confirmation by the results of Malik & Kumar (2020). Results of Kumar & Jain (2010) and Patra et al. (2012) are in conformity with the PDR observed during the post-monsoon season in QDT3. Krishnan et al. (2020) also reported a 6% decline in summer monsoon rainfall over India from 1951 to 2015 which was more prominent over the Indo-Gangetic plains and the Western Ghats. Kulkarni et al. (2017) reported that the rainfall has been reduced by 1–5 mm/day in QDT3 as compared to the QDT1 and QDT2 over Central India, Kerala, and extreme north-eastern India, whereas increased in the Jammu & Kashmir region and some parts of Western India. This can be attributed to climate change.

Rainfall variability

The coefficient of variation (CV) in Figure 5 depicts the spatial variability in the seasonal rainfall over India during the study period from 1901 to 1920. A higher value of CV indicates more spatial variability and vice versa. Rainfall variability based on the CV is categorized as low (less than 20), medium (from 20 to 30), and high (more than 30) as per Sangma et al. (2020). During winters, the variability of rainfall was high in the MSDs lying in Western India and South Western India. Variability in pre-monsoon season rainfall was also high in all except three MSDs namely Assam & Meghalaya, Sub-Himalayan West Bengal & Sikkim, and Nagaland, Manipur, Mizoram & Tripura, where medium variability was observed. West Rajasthan, Saurashtra & Kachh, and Jammu & Kashmir showed high variability whereas the rest of the MSDs showed medium to low variability in rainfall during the monsoon season. During the post-monsoon season, the variability in rainfall was high for all MSDs except Kerela. Overall, the monsoon season has brought the most consistent rainfall across different MSDs of India. Similar results were reported in the previous studies conducted by Mondal et al. (2015), Paul et al. (2016), and Pandey & Khare (2018). Guhathakurta & Rajeevan (2008) also reported higher CV during the post-monsoon and winter seasons.
Figure 5

The long-term distribution of coefficient of variation of seasonal rainfall during (a) winter season (JF), (b) pre-monsoon season (MAM), (c) monsoon season (JJAS) and (d) post-monsoon season (OND) in the meteorological sub-divisions of India.

Figure 5

The long-term distribution of coefficient of variation of seasonal rainfall during (a) winter season (JF), (b) pre-monsoon season (MAM), (c) monsoon season (JJAS) and (d) post-monsoon season (OND) in the meteorological sub-divisions of India.

Close modal

Rainfall categorization

Figure 6 depicts the categorization of rainfall of whole India based on IMD norms during various seasons in order to visualise the spatio-temporal patterns of rainfall received in various categories during the study period from 1901 to 2020. The normal and above normal rainfall (ANR), i.e., excess and the large excess category were observed in 17.1% and 29.6% of events respectively, whereas below normal rainfall (BNR) categories i.e., deficient and large deficient categories were observed in 53.2% cases during the winter season in India. During the pre-monsoon season, the normal, ANR and BNR were received in 29.2%, 26.9%, and 43.9% of the events, respectively. India received normal monsoon rainfall in 65.8% of the events, though BNR and ANR were observed in 17.4% and 16.8% of rainfall events respectively. Post-monsoon normal rainfall events in India were found to be 24.6%, while ANR and BNR were witnessed in 30.1% and 45.5% of rainfall events. Overall, among different MSDs, the quantum of BNR category was higher than ANR categories viz: excess and large excess rainfall, during winter, pre-monsoon, and post-monsoon season. The highest ANR categories of rainfall were observed at Kerela (35.0%) during the winter season, Bihar and Madhya Maharashtra (33.3%) during the pre-monsoon season, both West Rajasthan and Saurashtra & Kachh (29.2%) during the monsoon season, and Odisha (37.5%) during the post-monsoon season, respectively. Likewise, the highest cases of BNR categories of rainfall events were detected at Konkan & Goa (71.7%) during the winter season, Saurashtra & Kachh (75.8%) during both the pre-monsoon and post-monsoon season, and Jammu & Kashmir (40.0%) during the monsoon season, respectively. Overall, the monsoon season had received the most normal rainfall events in different MSDs of India, followed by the pre-monsoon, post-monsoon, and winter seasons.
Figure 6

The categorization of seasonal rainfall during winter season (JF), pre-monsoon season (MAM), monsoon season (JJAS) and post-monsoon season (OND) as per IMD classification presented in blocks a–d, respectively, in the meteorological sub-divisions of India, where large excess (≥60% from CLM120) represented by dark green, excess (20% to 59% from CLM120) represented by light green, normal (−19% to +19% from CLM120) represented by dull-yellow, deficient (−59% to −20%) represented by magenta and large-deficient (≤−60% from CLM120) represented by purple. The numeral from 2 to 35 on the vertical axis of each sub-plot represents the respective meteorological sub-division based on Figure 1.

Figure 6

The categorization of seasonal rainfall during winter season (JF), pre-monsoon season (MAM), monsoon season (JJAS) and post-monsoon season (OND) as per IMD classification presented in blocks a–d, respectively, in the meteorological sub-divisions of India, where large excess (≥60% from CLM120) represented by dark green, excess (20% to 59% from CLM120) represented by light green, normal (−19% to +19% from CLM120) represented by dull-yellow, deficient (−59% to −20%) represented by magenta and large-deficient (≤−60% from CLM120) represented by purple. The numeral from 2 to 35 on the vertical axis of each sub-plot represents the respective meteorological sub-division based on Figure 1.

Close modal

Number of rainy days

Figure 7 depicts the seasonal variation in the number of rainy days in different MSDs of mainland India. The highest average number of rainy days during the winter season was observed in the MSDs lying in the hilly regions of India including Himachal Pradesh, Jammu & Kashmir, Arunachal Pradesh, and Uttarakhand, whereas the lowest amount of average number of rainy days was witnessed in the MSDs lying in the western area of the country namely Gujarat region, Saurashtra & Kachh, Konkan & Goa, Madhya Maharashtra Coastal Karnataka, West Rajasthan, East Rajasthan, Marathwada, Rayalaseema, North Interior Karnataka, South Interior Karnataka, Coastal Andhra Pradesh, West Madhya Pradesh, and Telangana. During the pre-monsoon, the highest average number of rainy days season was seen in Assam & Meghalaya Arunachal Pradesh, Nagaland, Manipur, Mizoram & Tripura, Sub-Himalayan West Bengal & Sikkim, Kerala, Jammu & Kashmir, Himachal Pradesh, and Gangetic West Bengal while West Madhya Pradesh, Gujarat region, Saurashtra & Kachh. West Rajasthan and East Rajasthan observed the lowest number of rainy days. During monsoon season, Assam & Meghalaya, Sub-Himalayan West Bengal & Sikkim, Nagaland, Manipur, Mizoram & Tripura, Coastal Karnataka, Konkan & Goa, and Kerala witnessed the highest, whereas Saurashtra & Kachh, West Rajasthan, and Jammu & Kashmir had the lowest average number of rainy days. The highest average number of rainy days during the post-monsoon season was detected in Kerala, Tamil Nadu & Puducherry while, East Rajasthan, Saurashtra & Kachh, and West Rajasthan observed the lowest average number of rainy days.
Figure 7

The long-term distribution of average (a) maximum (b) and minimum (c) number of rainy days during winter, pre-monsoon, monsoon and post-monsoon seasons in the meteorological sub-divisions of India.

Figure 7

The long-term distribution of average (a) maximum (b) and minimum (c) number of rainy days during winter, pre-monsoon, monsoon and post-monsoon seasons in the meteorological sub-divisions of India.

Close modal
Figure 8 illustrates the rising or falling number of rainy days during various seasons at the MSDs level in different QDTs against the average number of rainy days of the whole study period from 1901 to 2020. It is evident from the figure that the number of rainy days has decreased in QDT3 across India in most of the MSDs except Sub-Himalayan West Bengal & Sikkim, and Jammu & Kashmir, where an increase of at least one rainfall event was witnessed during the winter season During the pre-monsoon season, the number of rainy days has increased by more than three events in each season in Sub-Himalayan West Bengal & Sikkim, Arunachal Pradesh, Jammu & Kashmir, and Uttarakhand, whereas Punjab, Himachal Pradesh, Bihar, Odisha, Haryana, Chandigarh & Delhi have observed an increase of more than one event during QDT3. A decrease of at least three rainfall events per monsoon season was observed in the MSDs lying in Indo-Gangetic plains like Uttarakhand, Uttar Pradesh, Jharkhand, and Gangetic West Bengal whereas Bihar, Marathwada, Vidarbha, East Madhya Pradesh, Chhattisgarh, and Orissa observed a decrease of at least three rainfall events per monsoon season during the last QDT. South Interior Karnataka and Jammu & Kashmir received four additional events, whereas North Interior Karnataka and Saurashtra & Kachh noticed two extra events of rainy days in each season during the monsoon season in QDT3. Coastal Andhra Pradesh, Rayalaseema, and Coastal Karnataka also had one additional event of rainy-day in each monsoon season in the last QDT. Kerala, Assam & Meghalaya, Tamil Nadu & Puducherry, Odisha, Arunachal Pradesh, East Uttar Pradesh, and Uttarakhand observed a fall by at least one rainy day, conversely, at least two additional rainy-day events were witnessed at Jammu & Kashmir during the post-monsoon season in QDT3. Overall, a general decrease in the number of rainfall events during the pre-monsoon season was observed in all the seasons except a few MSDs of northwest India showing a rise in recent times. Previous studies were undertaken by Lal (2003), Kumar et al. (2010), Kumar & Jain (2011), and Pathak & Dodamani (2020),Chauhan et al. (2022c, 2022d) also documented a decrease in the total annual amount of rainfall and number of rainy days over many parts of India. Goswami et al. (2006) also reported a decrease in moderate rain events.
Figure 8

The long-term deviation in number of rainy days (≥2.5 mm per day) in (a) QDT1, (b) QDT2, and (c) QDT3 from average number of rainy days of the whole study period of 120 years during winter, pre-monsoon, monsoon, and post-monsoon seasons in the meteorological sub-divisions of India.

Figure 8

The long-term deviation in number of rainy days (≥2.5 mm per day) in (a) QDT1, (b) QDT2, and (c) QDT3 from average number of rainy days of the whole study period of 120 years during winter, pre-monsoon, monsoon, and post-monsoon seasons in the meteorological sub-divisions of India.

Close modal

Rainfall intensity

The spatio-temporal variation in the average number of rainfall events based on the daily rainfall intensity (RI) was worked out at the MSDs level in India as depicted in Figure 9. The highest number of rainfall events having daily rainfall intensity between 2.5 mm and 10.0 mm (RI10) during the monsoon season was observed at Nagaland, Manipur, Mizoram, and Tripura followed by Odisha, Gangetic West Bengal, South Interior Karnataka, Jharkhand, Madhya Maharashtra, Bihar, and Coastal Andhra Pradesh, whereas RI10 events were lowest in Coastal Karnataka, Konkan & Goa, Jammu & Kashmir, West Rajasthan, and Saurashtra & Kachh. On average, more than 30 events having daily rainfall intensity between 10.1 mm and 20.0 mm (RI20) during the monsoon season were observed at Assam & Meghalaya, Nagaland, Manipur, Mizoram and Tripura, Sub-Himalayan West Bengal & Sikkim, Arunachal Pradesh, and Kerala, while lowest numbers of less than 10 events per season were seen at Haryana, Chandigarh & Delhi, Rayalaseema, Saurashtra & Kachh, Tamil Nadu & Puducherry, West Rajasthan, and Jammu & Kashmir. Rainfall events having daily rainfall intensity between 20.1 mm and 30.0 mm (RI30) with an average frequency of more than 10 events per monsoon season were observed in Sub-Himalayan West Bengal & Sikkim, Coastal Karnataka, Arunachal Pradesh, Konkan & Goa, Kerala, Assam & Meghalaya, Chhattisgarh while Rayalaseema, North Interior Karnataka, Coastal Andhra Pradesh, South Interior Karnataka, West Rajasthan, Jammu & Kashmir, Tamil Nadu & Puducherry observed less than two events per season in RI30 range. Coastal Karnataka, Konkan & Goa, and Sub-Himalayan West Bengal & Sikkim observed more than 10 events with daily rainfall intensity between 30.1 mm and 40.0 mm (RI40), and more than five events with daily rainfall intensity between 40.1 mm and 50.0 mm (RI50) per monsoon season, while all the remaining MSDs had less than four events in both RI40 and RI50 category. Konkan & Goa and Coastal Karnataka encountered more than 12 events with daily rainfall intensity above 50.0 mm (RI50+), followed by Sub-Himalayan West Bengal & Sikkim with nearly six events, while all other MSDs observed less than four or no events in the RI50+ category.
Figure 9

The long-term distribution of average number of rainfall events based on the daily rainfall intensity (RI) during monsoon season (a) RI10 (≥2.5–10.0 mm), (b) RI20 (10.1–20.0 mm), (c) RI30 (20.1–30.0 mm), (d) RI40 (30.1–40.0 mm), (e) RI50 (40.1–50.0 mm), and (f) RI50+ (50.1 mm and above) in the meteorological sub-divisions of India.

Figure 9

The long-term distribution of average number of rainfall events based on the daily rainfall intensity (RI) during monsoon season (a) RI10 (≥2.5–10.0 mm), (b) RI20 (10.1–20.0 mm), (c) RI30 (20.1–30.0 mm), (d) RI40 (30.1–40.0 mm), (e) RI50 (40.1–50.0 mm), and (f) RI50+ (50.1 mm and above) in the meteorological sub-divisions of India.

Close modal
Figure 10 depicts the spatio-temporal variation of percent-deviation in the intensity of rainfall events (DRI) in different rainfall intensity categories during monsoon season in different MSDs during all QDTs from the long-term mean number of events observed from 1901 to 2020. The positive DRI depicts that the number of rainfall events has increased in that specific rainfall intensity category and vice-versa. It can be observed that most of the MSDs lying in northwest India have shown an increase in RI10 during QDT3, whereas rainfall events in RI20 and RI30 categories have shown a decrease specifically in Haryana, Himachal, Uttarakhand, Uttar Pradesh, Bihar, and Madhya Pradesh. An increase in RI30 events has been observed during QDT3 at the eastern coast of peninsular India, specifically at Tamil Nadu & Puducherry, coastal Andhra Pradesh, Rayalaseema, and South Interior Karnataka. An increase in the frequency of rainfall events in RI40, RI50, and RI50+ categories was observed specifically over Jammu & Kashmir, Rajasthan, Saurashtra & Kachh, Assam & Meghalaya, Nagaland, Manipur, Mizoram, and Tripura, whereas a decrease was observed in Haryana, Himachal Pradesh, Uttar Pradesh, and Arunachal Pradesh in the last QDT under these categories. Similar results can be found in the work of Goswami et al. (2006) in which daily rainfall data was used to depict an increase in the frequency and magnitude of events with high rainfall intensity and a decrease in the frequency and intensity of moderate rainfall intensity events over central India during the monsoon seasons. Khan et al. (2000), Shrestha et al. (2000), Mirza (2002); Min et al. (2003), and Dash et al. (2007) documented an increase in the frequency of intense rainfall events in many parts of Asia. Nageswararao et al. (2019) reported an increase in the high-intensity rainfall events during QDT3 over the southern Peninsular region. Guhathakurta et al. (2011) reported an increase in the frequency of heavy rainfall events over Peninsular, east, and north-east India whereas a decrease over major parts of Central and North India. Kulkarni et al. (2020) and Krishnan et al. (2020) also reported an increased frequency of heavy rainfall from 1951 to 2015 which may be due to increased urbanization, land use changes, and increased aerosols concentration. All of these factors are responsible for climate change.
Figure 10

The long-term percent deviation (%) in intensity of rainfall events in QDT1 (a), QDT2 (b) and QDT3 (c) from average number of rainfall events in respective rainfall intensity category observed during the whole study period of 120 years, and rainfall intensity categories of RI10 (≥2.5–10.0 mm; row 1st), RI20 (10.1–20.0 mm; row 2nd), RI30 (20.1–30.0 mm; row 3rd), RI40 (30.1–40.0 mm; row 4th), RI50 (40.1–50.0 mm; row 5th) and RI50+ (50.1 mm and above; row 6th) in the meteorological sub-divisions of India.

Figure 10

The long-term percent deviation (%) in intensity of rainfall events in QDT1 (a), QDT2 (b) and QDT3 (c) from average number of rainfall events in respective rainfall intensity category observed during the whole study period of 120 years, and rainfall intensity categories of RI10 (≥2.5–10.0 mm; row 1st), RI20 (10.1–20.0 mm; row 2nd), RI30 (20.1–30.0 mm; row 3rd), RI40 (30.1–40.0 mm; row 4th), RI50 (40.1–50.0 mm; row 5th) and RI50+ (50.1 mm and above; row 6th) in the meteorological sub-divisions of India.

Close modal

Rainfall trend

The ITA method was applied to detect the trends in time series of rainfall in different QDTs as well as CLM120. Traditional studies which usually consider the whole time period give an outlook of overall changes acquainted in any region, but this type of trend analysis is helpful in detecting the significant changes encountered during the specific time period, which can direct the researchers and policymakers in identifying the probable cause of these changes at that particular point of time, thus giving them a narrow study window than considering a broad temporal scale.

Table 2 shows the rainfall trends observed by the ITA method during the winter season, with graphical results in Figure 11(a) and 11(b). Around 97.1% of the MSDs showed significant trends in the winter season with 88.2% MSDs showing a significantly decreasing and 8.8% MSDs showing a significantly rising trend at either 95% or 99% confidence level during CLM120 respectively. The number of MSDs has increased in number over the time period with 35.3%, 70.6%, and 67.6% of the MSDs showing a significantly declining trend in winter rainfall during QDT1, QDT2 and QDT3. Overall, decreasing trends along with the highest degree of change in magnitude in most of the MSDs were observed during the last two QDTs. Guhathakurta & Rajeevan (2008) also reported a decreasing trend in winter rainfall in all the MSDs except Himachal Pradesh, Jharkhand, Nagaland, Manipur, Mizoram, and Tripura. This downward trend in winter rainfall can be attributed to the decrease in western disturbances (WD). The frequencies of WD are reported to have decreasing trend by Das et al. (2002), Shekhar et al. (2010), and Dimri & Dash (2012).
Table 2

Results of ITA method during winter season at meteorological sub-division level in India during different time periods

MSD no.MSD nameQDT1
QDT2
QDT3
120
ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99
Arunachal Pradesh 0.95 ** 0.16 0.88 ± 0.32 ± 0.42 1.68 ** 0.11 0.96 ± 0.21 ± 0.28 −2.35 ** 0.16 0.93 ± 0.31 ± 0.4 0.21 ** 0.02 0.97 ± 0.03 ± 0.04 
Assam & Meghalaya −0.02 0.04 0.97 ± 0.08 ± 0.11 0.02 0.06 0.96 ± 0.12 ± 0.15 −0.75 ** 0.1 0.89 ± 0.2 ± 0.26 −0.11 ** 0.02 0.9 ± 0.04 ± 0.05 
Nagaland, Manipur, Mizoram & Tripura 0.21 ** 0.06 0.96 ± 0.12 ± 0.16 −0.4 ** 0.07 0.94 ± 0.14 ± 0.19 −1.12 ** 0.13 0.87 ± 0.25 ± 0.33 −0.18 ** 0.02 0.86 ± 0.05 ± 0.06 
Sub-Himalayan West Bengal & Sikkim 0.05 0.05 0.96 ± 0.09 ± 0.12 −0.53 ** 0.06 0.94 ± 0.13 ± 0.17 −0.83 ** 0.08 0.94 ± 0.15 ± 0.2 0.01 0.98 ± 0.01 ± 0.02 
Gangetic West Bengal 0.09 0.11 0.93 ± 0.22 ± 0.29 0.17 ** 0.03 0.99 ± 0.06 ± 0.08 −0.45 ** 0.06 0.96 ± 0.12 ± 0.15 −0.1 ** 0.01 0.95 ± 0.03 ± 0.04 
Odisha −0.3 ** 0.06 0.97 ± 0.12 ± 0.16 −0.05 0.06 0.96 ± 0.12 ± 0.15 −0.71 ** 0.07 0.92 ± 0.13 ± 0.17 −0.14 ** 0.01 0.94 ± 0.03 ± 0.04 
Jharkhand 0.24 ** 0.08 0.97 ± 0.15 ± 0.2 −0.57 ** 0.05 0.97 ± 0.1 ± 0.13 −0.41 ** 0.04 0.97 ± 0.08 ± 0.11 −0.37 ** ± 0.01 ± 0.01 
Bihar 0.2 ** 0.04 0.97 ± 0.07 ± 0.09 −0.68 ** 0.05 0.95 ± 0.11 ± 0.14 −0.09 0.05 0.92 ± 0.1 ± 0.14 −0.19 ** 0.99 ± 0.01 ± 0.01 
10 East Uttar Pradesh 0.12 0.09 0.89 ± 0.17 ± 0.23 −0.7 ** 0.07 0.92 ± 0.14 ± 0.18 −0.06 0.07 0.92 ± 0.14 ± 0.18 −0.15 ** 0.01 0.96 ± 0.02 ± 0.02 
11 West Uttar Pradesh 0.06 0.13 0.82 ± 0.26 ± 0.34 −0.67 ** 0.05 0.97 ± 0.09 ± 0.12 0.03 0.04 0.98 ± 0.08 ± 0.1 −0.13 ** 0.01 0.99 ± 0.01 ± 0.02 
12 Uttarakhand 0.16 0.15 0.95 ± 0.3 ± 0.39 0.75 ** 0.15 0.96 ± 0.28 ± 0.37 0.14 0.09 0.97 ± 0.18 ± 0.24 −0.1 ** 0.03 0.94 ± 0.06 ± 0.08 
13 Haryana, Chandigarh & New Delhi −0.02 0.04 0.98 ± 0.08 ± 0.11 −0.59 ** 0.07 0.95 ± 0.13 ± 0.17 −0.17 ** 0.06 0.95 ± 0.11 ± 0.15 −0.12 ** 0.01 0.97 ± 0.02 ± 0.02 
14 Punjab −0.12 * 0.05 0.98 ± 0.1 ± 0.13 −0.69 ** 0.05 0.98 ± 0.1 ± 0.14 −0.29 ** 0.07 0.95 ± 0.14 ± 0.18 −0.1 ** 0.01 0.99 ± 0.01 ± 0.02 
15 Himachal Pradesh 0.62 ** 0.15 0.96 ± 0.3 ± 0.4 −0.7 0.37 0.86 ± 0.72 ± 0.95 −0.79 ** 0.12 0.98 ± 0.23 ± 0.3 0.13 ** 0.02 0.98 ± 0.04 ± 0.06 
16 Jammu & Kashmir 2.09 ** 0.21 0.88 ± 0.42 ± 0.55 −1.39 ** 0.2 0.96 ± 0.4 ± 0.52 −1.87 ** 0.21 0.93 ± 0.42 ± 0.55 0.52 ** 0.05 0.92 ± 0.09 ± 0.12 
17 West Rajasthan −0.14 ** 0.01 0.98 ± 0.03 ± 0.04 −0.08 ** 0.02 0.97 ± 0.03 ± 0.04 0.02 0.95 ± 0.04 ± 0.06 −0.02 ** 0.99 ± 0 ± 0 
18 East Rajasthan −0.2 ** 0.03 0.94 ± 0.06 ± 0.08 −0.28 ** 0.03 0.95 ± 0.06 ± 0.08 −0.03 * 0.02 0.98 ± 0.03 ± 0.04 −0.06 ** 0.99 ± 0.01 ± 0.01 
19 West Madhya Pradesh −0.32 ** 0.03 0.97 ± 0.05 ± 0.07 −0.54 ** 0.05 0.93 ± 0.09 ± 0.12 −0.01 0.03 0.97 ± 0.06 ± 0.08 −0.08 ** 0.01 0.97 ± 0.01 ± 0.02 
20 East Madhya Pradesh −0.36 ** 0.12 0.88 ± 0.23 ± 0.31 −1.07 ** 0.05 0.98 ± 0.11 ± 0.14 −0.33 ** 0.05 0.98 ± 0.1 ± 0.13 −0.21 ** 0.01 0.98 ± 0.02 ± 0.02 
21 Gujarat region −0.19 ** 0.01 0.97 ± 0.03 ± 0.04 −0.12 ** 0.01 0.98 ± 0.01 ± 0.02 0.03 ** 0.01 0.96 ± 0.01 ± 0.01 −0.05 ** 0.95 ± 0.01 ± 0.01 
22 Saurashtra & Kachh −0.09 ** 0.01 0.95 ± 0.03 ± 0.04 −0.05 ** 0.01 0.96 ± 0.01 ± 0.02 −0.04 ** 0.99 ± 0 ± 0.01 −0.04 ** 0.94 ± 0 ± 0.01 
23 Konkan & Goa −0.04 0.02 0.88 ± 0.04 ± 0.06 −0.08 ** 0.02 0.85 ± 0.04 ± 0.05 0.01 0.93 ± 0.01 ± 0.01 −0.03 ** 0.91 ± 0.01 ± 0.01 
24 Madhya Maharashtra −0.09 ** 0.02 0.97 ± 0.04 ± 0.05 −0.16 ** 0.03 0.88 ± 0.06 ± 0.08 −0.08 ** 0.01 0.95 ± 0.02 ± 0.03 −0.06 ** 0.94 ± 0.01 ± 0.01 
25 Marathwada 0.08 ** 0.03 0.98 ± 0.06 ± 0.07 −0.16 ** 0.02 0.97 ± 0.04 ± 0.05 −0.13 ** 0.03 0.92 ± 0.06 ± 0.08 −0.1 ** 0.99 ± 0.01 ± 0.01 
26 Vidarbha −0.22 ** 0.04 0.98 ± 0.07 ± 0.09 −0.5 ** 0.07 0.92 ± 0.14 ± 0.19 −0.32 ** 0.08 0.86 ± 0.16 ± 0.21 −0.17 ** 0.01 0.97 ± 0.02 ± 0.02 
27 Chhattisgarh −0.47 ** 0.09 0.95 ± 0.18 ± 0.24 −0.8 ** 0.06 0.95 ± 0.11 ± 0.15 −0.08 ** 0.02 0.99 ± 0.03 ± 0.05 −0.32 ** 0.01 0.98 ± 0.02 ± 0.02 
28 Coastal Andhra Pradesh −0.03 0.06 0.96 ± 0.11 ± 0.15 0.15 ** 0.01 0.99 ± 0.02 ± 0.03 −0.57 ** 0.05 0.96 ± 0.1 ± 0.13 −0.02 ** 0.01 0.98 ± 0.01 ± 0.02 
29 Telangana 0.14 ** 0.03 0.98 ± 0.06 ± 0.08 0.11 ** 0.03 0.95 ± 0.05 ± 0.07 −0.11 0.06 0.91 ± 0.11 ± 0.15 −0.05 ** 0.99 ± 0.01 ± 0.01 
30 Rayalaseema −0.34 ** 0.04 0.97 ± 0.09 ± 0.11 −0.06 ** 0.01 0.96 ± 0.03 ± 0.03 −0.25 ** 0.05 0.91 ± 0.11 ± 0.14 −0.12 ** 0.01 0.94 ± 0.02 ± 0.02 
31 Tamil Nadu & Puducherry 0.75 ** 0.07 0.98 ± 0.14 ± 0.18 −0.9 ** 0.08 0.94 ± 0.16 ± 0.21 −0.91 ** 0.1 0.96 ± 0.19 ± 0.25 −0.35 ** 0.02 0.95 ± 0.04 ± 0.05 
32 Coastal Karnataka 0.03 0.03 0.92 ± 0.05 ± 0.07 −0.08 ** 0.02 0.82 ± 0.05 ± 0.06 0.2 ** 0.02 0.97 ± 0.03 ± 0.04 −0.02 ** 0.97 ± 0.01 ± 0.01 
33 North Interior Karnataka 0.1 ** 0.02 0.98 ± 0.04 ± 0.05 0.05 ** 0.01 0.96 ± 0.02 ± 0.03 0.03 0.02 0.94 ± 0.04 ± 0.06 −0.03 ** 0.96 ± 0.01 ± 0.01 
34 South Interior Karnataka 0.01 0.03 0.96 ± 0.05 ± 0.07 −0.06 0.03 0.83 ± 0.06 ± 0.08 0.15 ** 0.01 0.98 ± 0.03 ± 0.03 −0.05 ** 0.98 ± 0.01 ± 0.01 
35 Kerala 0.23 ** 0.04 0.98 ± 0.07 ± 0.09 −0.55 ** 0.09 0.91 ± 0.17 ± 0.22 −0.36 ** 0.07 0.95 ± 0.13 ± 0.17 −0.22 ** 0.01 0.97 ± 0.02 ± 0.02 
MSD no.MSD nameQDT1
QDT2
QDT3
120
ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99
Arunachal Pradesh 0.95 ** 0.16 0.88 ± 0.32 ± 0.42 1.68 ** 0.11 0.96 ± 0.21 ± 0.28 −2.35 ** 0.16 0.93 ± 0.31 ± 0.4 0.21 ** 0.02 0.97 ± 0.03 ± 0.04 
Assam & Meghalaya −0.02 0.04 0.97 ± 0.08 ± 0.11 0.02 0.06 0.96 ± 0.12 ± 0.15 −0.75 ** 0.1 0.89 ± 0.2 ± 0.26 −0.11 ** 0.02 0.9 ± 0.04 ± 0.05 
Nagaland, Manipur, Mizoram & Tripura 0.21 ** 0.06 0.96 ± 0.12 ± 0.16 −0.4 ** 0.07 0.94 ± 0.14 ± 0.19 −1.12 ** 0.13 0.87 ± 0.25 ± 0.33 −0.18 ** 0.02 0.86 ± 0.05 ± 0.06 
Sub-Himalayan West Bengal & Sikkim 0.05 0.05 0.96 ± 0.09 ± 0.12 −0.53 ** 0.06 0.94 ± 0.13 ± 0.17 −0.83 ** 0.08 0.94 ± 0.15 ± 0.2 0.01 0.98 ± 0.01 ± 0.02 
Gangetic West Bengal 0.09 0.11 0.93 ± 0.22 ± 0.29 0.17 ** 0.03 0.99 ± 0.06 ± 0.08 −0.45 ** 0.06 0.96 ± 0.12 ± 0.15 −0.1 ** 0.01 0.95 ± 0.03 ± 0.04 
Odisha −0.3 ** 0.06 0.97 ± 0.12 ± 0.16 −0.05 0.06 0.96 ± 0.12 ± 0.15 −0.71 ** 0.07 0.92 ± 0.13 ± 0.17 −0.14 ** 0.01 0.94 ± 0.03 ± 0.04 
Jharkhand 0.24 ** 0.08 0.97 ± 0.15 ± 0.2 −0.57 ** 0.05 0.97 ± 0.1 ± 0.13 −0.41 ** 0.04 0.97 ± 0.08 ± 0.11 −0.37 ** ± 0.01 ± 0.01 
Bihar 0.2 ** 0.04 0.97 ± 0.07 ± 0.09 −0.68 ** 0.05 0.95 ± 0.11 ± 0.14 −0.09 0.05 0.92 ± 0.1 ± 0.14 −0.19 ** 0.99 ± 0.01 ± 0.01 
10 East Uttar Pradesh 0.12 0.09 0.89 ± 0.17 ± 0.23 −0.7 ** 0.07 0.92 ± 0.14 ± 0.18 −0.06 0.07 0.92 ± 0.14 ± 0.18 −0.15 ** 0.01 0.96 ± 0.02 ± 0.02 
11 West Uttar Pradesh 0.06 0.13 0.82 ± 0.26 ± 0.34 −0.67 ** 0.05 0.97 ± 0.09 ± 0.12 0.03 0.04 0.98 ± 0.08 ± 0.1 −0.13 ** 0.01 0.99 ± 0.01 ± 0.02 
12 Uttarakhand 0.16 0.15 0.95 ± 0.3 ± 0.39 0.75 ** 0.15 0.96 ± 0.28 ± 0.37 0.14 0.09 0.97 ± 0.18 ± 0.24 −0.1 ** 0.03 0.94 ± 0.06 ± 0.08 
13 Haryana, Chandigarh & New Delhi −0.02 0.04 0.98 ± 0.08 ± 0.11 −0.59 ** 0.07 0.95 ± 0.13 ± 0.17 −0.17 ** 0.06 0.95 ± 0.11 ± 0.15 −0.12 ** 0.01 0.97 ± 0.02 ± 0.02 
14 Punjab −0.12 * 0.05 0.98 ± 0.1 ± 0.13 −0.69 ** 0.05 0.98 ± 0.1 ± 0.14 −0.29 ** 0.07 0.95 ± 0.14 ± 0.18 −0.1 ** 0.01 0.99 ± 0.01 ± 0.02 
15 Himachal Pradesh 0.62 ** 0.15 0.96 ± 0.3 ± 0.4 −0.7 0.37 0.86 ± 0.72 ± 0.95 −0.79 ** 0.12 0.98 ± 0.23 ± 0.3 0.13 ** 0.02 0.98 ± 0.04 ± 0.06 
16 Jammu & Kashmir 2.09 ** 0.21 0.88 ± 0.42 ± 0.55 −1.39 ** 0.2 0.96 ± 0.4 ± 0.52 −1.87 ** 0.21 0.93 ± 0.42 ± 0.55 0.52 ** 0.05 0.92 ± 0.09 ± 0.12 
17 West Rajasthan −0.14 ** 0.01 0.98 ± 0.03 ± 0.04 −0.08 ** 0.02 0.97 ± 0.03 ± 0.04 0.02 0.95 ± 0.04 ± 0.06 −0.02 ** 0.99 ± 0 ± 0 
18 East Rajasthan −0.2 ** 0.03 0.94 ± 0.06 ± 0.08 −0.28 ** 0.03 0.95 ± 0.06 ± 0.08 −0.03 * 0.02 0.98 ± 0.03 ± 0.04 −0.06 ** 0.99 ± 0.01 ± 0.01 
19 West Madhya Pradesh −0.32 ** 0.03 0.97 ± 0.05 ± 0.07 −0.54 ** 0.05 0.93 ± 0.09 ± 0.12 −0.01 0.03 0.97 ± 0.06 ± 0.08 −0.08 ** 0.01 0.97 ± 0.01 ± 0.02 
20 East Madhya Pradesh −0.36 ** 0.12 0.88 ± 0.23 ± 0.31 −1.07 ** 0.05 0.98 ± 0.11 ± 0.14 −0.33 ** 0.05 0.98 ± 0.1 ± 0.13 −0.21 ** 0.01 0.98 ± 0.02 ± 0.02 
21 Gujarat region −0.19 ** 0.01 0.97 ± 0.03 ± 0.04 −0.12 ** 0.01 0.98 ± 0.01 ± 0.02 0.03 ** 0.01 0.96 ± 0.01 ± 0.01 −0.05 ** 0.95 ± 0.01 ± 0.01 
22 Saurashtra & Kachh −0.09 ** 0.01 0.95 ± 0.03 ± 0.04 −0.05 ** 0.01 0.96 ± 0.01 ± 0.02 −0.04 ** 0.99 ± 0 ± 0.01 −0.04 ** 0.94 ± 0 ± 0.01 
23 Konkan & Goa −0.04 0.02 0.88 ± 0.04 ± 0.06 −0.08 ** 0.02 0.85 ± 0.04 ± 0.05 0.01 0.93 ± 0.01 ± 0.01 −0.03 ** 0.91 ± 0.01 ± 0.01 
24 Madhya Maharashtra −0.09 ** 0.02 0.97 ± 0.04 ± 0.05 −0.16 ** 0.03 0.88 ± 0.06 ± 0.08 −0.08 ** 0.01 0.95 ± 0.02 ± 0.03 −0.06 ** 0.94 ± 0.01 ± 0.01 
25 Marathwada 0.08 ** 0.03 0.98 ± 0.06 ± 0.07 −0.16 ** 0.02 0.97 ± 0.04 ± 0.05 −0.13 ** 0.03 0.92 ± 0.06 ± 0.08 −0.1 ** 0.99 ± 0.01 ± 0.01 
26 Vidarbha −0.22 ** 0.04 0.98 ± 0.07 ± 0.09 −0.5 ** 0.07 0.92 ± 0.14 ± 0.19 −0.32 ** 0.08 0.86 ± 0.16 ± 0.21 −0.17 ** 0.01 0.97 ± 0.02 ± 0.02 
27 Chhattisgarh −0.47 ** 0.09 0.95 ± 0.18 ± 0.24 −0.8 ** 0.06 0.95 ± 0.11 ± 0.15 −0.08 ** 0.02 0.99 ± 0.03 ± 0.05 −0.32 ** 0.01 0.98 ± 0.02 ± 0.02 
28 Coastal Andhra Pradesh −0.03 0.06 0.96 ± 0.11 ± 0.15 0.15 ** 0.01 0.99 ± 0.02 ± 0.03 −0.57 ** 0.05 0.96 ± 0.1 ± 0.13 −0.02 ** 0.01 0.98 ± 0.01 ± 0.02 
29 Telangana 0.14 ** 0.03 0.98 ± 0.06 ± 0.08 0.11 ** 0.03 0.95 ± 0.05 ± 0.07 −0.11 0.06 0.91 ± 0.11 ± 0.15 −0.05 ** 0.99 ± 0.01 ± 0.01 
30 Rayalaseema −0.34 ** 0.04 0.97 ± 0.09 ± 0.11 −0.06 ** 0.01 0.96 ± 0.03 ± 0.03 −0.25 ** 0.05 0.91 ± 0.11 ± 0.14 −0.12 ** 0.01 0.94 ± 0.02 ± 0.02 
31 Tamil Nadu & Puducherry 0.75 ** 0.07 0.98 ± 0.14 ± 0.18 −0.9 ** 0.08 0.94 ± 0.16 ± 0.21 −0.91 ** 0.1 0.96 ± 0.19 ± 0.25 −0.35 ** 0.02 0.95 ± 0.04 ± 0.05 
32 Coastal Karnataka 0.03 0.03 0.92 ± 0.05 ± 0.07 −0.08 ** 0.02 0.82 ± 0.05 ± 0.06 0.2 ** 0.02 0.97 ± 0.03 ± 0.04 −0.02 ** 0.97 ± 0.01 ± 0.01 
33 North Interior Karnataka 0.1 ** 0.02 0.98 ± 0.04 ± 0.05 0.05 ** 0.01 0.96 ± 0.02 ± 0.03 0.03 0.02 0.94 ± 0.04 ± 0.06 −0.03 ** 0.96 ± 0.01 ± 0.01 
34 South Interior Karnataka 0.01 0.03 0.96 ± 0.05 ± 0.07 −0.06 0.03 0.83 ± 0.06 ± 0.08 0.15 ** 0.01 0.98 ± 0.03 ± 0.03 −0.05 ** 0.98 ± 0.01 ± 0.01 
35 Kerala 0.23 ** 0.04 0.98 ± 0.07 ± 0.09 −0.55 ** 0.09 0.91 ± 0.17 ± 0.22 −0.36 ** 0.07 0.95 ± 0.13 ± 0.17 −0.22 ** 0.01 0.97 ± 0.02 ± 0.02 

*Trend at 5% significance level (p<0.05); **Trend at 1% significance level (p<0.01); σs, slope of SD (mm); ρ, Correlation; CL95 and CL99, Lower & upper confidence limit at 95 and 99 percent.

Figure 11

(a) Innovative trend analysis (ITA) of winter season (JF) rainfall during QDT1, QDT2, QDT3 and CLM120 in different meteorological sub-divisions of India. (b) ITA of winter season (JF) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different the meteorological sub-divisions of India

Figure 11

(a) Innovative trend analysis (ITA) of winter season (JF) rainfall during QDT1, QDT2, QDT3 and CLM120 in different meteorological sub-divisions of India. (b) ITA of winter season (JF) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different the meteorological sub-divisions of India

Close modal
The trends of rainfall identified by ITA for the pre-monsoon season are provided in Table 3 and its graphical illustrations can be seen in Figure 12(a) and 12(b). Among different MSDs, the increasing (44.1%) and the decreasing (47.1%) trends are almost equally dominating all over the study area during CLM120. The ITAS during the pre-monsoon season disclose that most of the MSDs showed a statistically significant decreasing trends in QDT1 (55.9%) and QDT2 (61.8%) whereas only 23.5% of the MSDs viz: Arunachal Pradesh, Gangetic West Bengal, Gujarat region, Himachal Pradesh, Jammu & Kashmir, Nagaland, Manipur, Mizoram & Tripura, Odisha, Saurashtra & Kachh showed significantly decreasing trends during QDT3. Overall an increasing trend in pre-monsoon rainfall was observed in around 70.6% MSDs of India during the last QDT out of which 52.9% of the MSDs showed significantly increasing trends. However, Guhathakurta & Rajeevan (2008) reported decreasing linear trend in rainfall during the pre-monsoon season over Central India. These rainfall trends may be an appearance of air temperature variation due to an increase in aerosols during the pre-monsoon season in most parts of India (Krishna Moorthy et al. 2013; Sivaprasad & Babu 2014) because of the increased industrialization. Rainfall in the pre-monsoon period is caused by thunderstorms and deep convective activities owing to the semi-permanent heat lows through the northwestern part of India and central part of Pakistan (Chandrasekar 2010). Extreme heat lows and resultant rainfall might be the reason for upward trends in rainfall during QDT3 in the MSDs covering the north-western region of India. The rainfall trend in Central India may be decreasing due to the decrease in the frequency of formation of low-pressure systems over the Bay of Bengal (Rajeevan et al. 2000; Dash et al. 2004; Guhathakurta & Rajeevan 2008).
Table 3

Results of ITA method during pre-monsoon seasons at meteorological sub-division level in India during different time periods

MSD no.MSD nameQDT1
QDT2
QDT3
120
ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99
Arunachal Pradesh 6.05 ** 0.51 0.93 ± 1 ± 1.31 −6.17 ** 0.42 0.97 ± 0.82 ± 1.08 −7.22 ** 0.4 0.97 ± 0.78 ± 1.02 −0.12 0.07 0.98 ± 0.13 ± 0.18 
Assam & Meghalaya 1.46 ** 0.27 0.96 ± 0.53 ± 0.7 −5.19 ** 0.29 0.97 ± 0.57 ± 0.75 0.02 0.24 0.97 ± 0.46 ± 0.61 −0.32 ** 0.05 0.97 ± 0.09 ± 0.12 
Nagaland, Manipur, Mizoram & Tripura −0.06 0.27 0.96 ± 0.53 ± 0.7 −4.63 ** 0.2 0.98 ± 0.4 ± 0.52 −2.94 ** 0.25 0.97 ± 0.48 ± 0.63 −0.4 ** 0.04 0.97 ± 0.09 ± 0.11 
Sub-Himalayan West Bengal & Sikkim 0.46 0.45 0.83 ± 0.87 ± 1.15 −2.52 ** 0.15 0.99 ± 0.29 ± 0.38 1.74 ** 0.16 0.97 ± 0.31 ± 0.41 0.52 ** 0.02 0.99 ± 0.05 ± 0.06 
Gangetic West Bengal −2.6 ** 0.19 0.94 ± 0.37 ± 0.48 0.16 0.28 0.9 ± 0.56 ± 0.73 −0.95 ** 0.08 0.99 ± 0.16 ± 0.22 0.01 0.02 0.98 ± 0.04 ± 0.05 
Odisha −1.3 ** 0.09 0.98 ± 0.17 ± 0.22 −0.25 ** 0.06 0.98 ± 0.11 ± 0.14 −1.16 ** 0.18 0.94 ± 0.36 ± 0.47 0.15 ** 0.03 0.94 ± 0.06 ± 0.07 
Jharkhand −1.23 ** 0.11 0.94 ± 0.22 ± 0.29 −0.01 0.11 0.94 ± 0.22 ± 0.3 0.49 ** 0.1 0.95 ± 0.19 ± 0.25 0.04 ** 0.01 0.98 ± 0.03 ± 0.04 
Bihar −1.07 ** 0.1 0.94 ± 0.19 ± 0.26 −0.02 0.12 0.92 ± 0.24 ± 0.32 0.72 ** 0.07 0.97 ± 0.14 ± 0.18 0.17 ** 0.02 0.97 ± 0.03 ± 0.04 
10 East Uttar Pradesh −0.63 ** 0.03 0.99 ± 0.07 ± 0.09 −0.08 0.05 0.95 ± 0.11 ± 0.14 0.08 0.05 0.97 ± 0.09 ± 0.12 0.03 ** ± 0.01 ± 0.01 
11 West Uttar Pradesh −0.76 ** 0.09 0.9 ± 0.17 ± 0.23 0.02 0.99 ± 0.04 ± 0.06 0.22 ** 0.04 0.98 ± 0.09 ± 0.11 0.05 ** 0.01 0.97 ± 0.02 ± 0.02 
12 Uttarakhand −3.21 ** 0.22 0.92 ± 0.43 ± 0.56 1.12 ** 0.11 0.97 ± 0.22 ± 0.29 −0.09 0.09 0.99 ± 0.18 ± 0.24 0.53 ** 0.02 0.99 ± 0.03 ± 0.04 
13 Haryana, Chandigarh & New Delhi −0.77 ** 0.06 0.95 ± 0.13 ± 0.17 0.34 ** 0.05 0.92 ± 0.1 ± 0.14 0.32 ** 0.09 0.96 ± 0.17 ± 0.23 0.21 ** 0.01 0.98 ± 0.02 ± 0.02 
14 Punjab −1.16 ** 0.08 0.95 ± 0.16 ± 0.21 0.31 ** 0.04 0.98 ± 0.07 ± 0.09 0.02 0.13 0.93 ± 0.26 ± 0.34 0.2 ** 0.02 0.95 ± 0.03 ± 0.04 
15 Himachal Pradesh −2.08 ** 0.51 0.73 ± 1 ± 1.32 −1.15 ** 0.16 0.96 ± 0.32 ± 0.42 −3.94 ** 0.17 0.98 ± 0.32 ± 0.43 0.23 ** 0.02 0.99 ± 0.05 ± 0.06 
16 Jammu & Kashmir 0.96 ** 0.06 0.98 ± 0.12 ± 0.16 0.43 0.24 0.9 ± 0.47 ± 0.62 −7.89 ** 0.38 0.93 ± 0.75 ± 0.99 1.43 ** 0.03 0.98 ± 0.06 ± 0.08 
17 West Rajasthan −0.42 ** 0.03 0.98 ± 0.05 ± 0.07 0.29 ** 0.04 0.88 ± 0.08 ± 0.11 0.05 0.06 0.93 ± 0.12 ± 0.15 0.13 ** 0.01 0.97 ± 0.01 ± 0.02 
18 East Rajasthan −0.44 ** 0.07 0.91 ± 0.13 ± 0.17 0.2 ** 0.03 0.95 ± 0.06 ± 0.08 0.18 ** 0.04 0.95 ± 0.08 ± 0.11 0.03 ** 0.01 0.96 ± 0.01 ± 0.02 
19 West Madhya Pradesh −0.29 ** 0.02 0.98 ± 0.04 ± 0.06 −0.21 ** 0.02 0.98 ± 0.04 ± 0.06 0.2 ** 0.05 0.89 ± 0.11 ± 0.14 −0.06 ** 0.01 0.95 ± 0.01 ± 0.02 
20 East Madhya Pradesh −0.33 ** 0.1 0.92 ± 0.19 ± 0.25 −0.38 ** 0.06 0.95 ± 0.11 ± 0.14 0.45 ** 0.06 0.94 ± 0.11 ± 0.15 −0.18 ** 0.99 ± 0.01 ± 0.01 
21 Gujarat region −0.45 ** 0.04 0.96 ± 0.08 ± 0.11 −0.01 0.03 0.97 ± 0.05 ± 0.07 −0.2 ** 0.03 0.94 ± 0.05 ± 0.07 −0.08 ** 0.01 0.95 ± 0.01 ± 0.02 
22 Saurashtra & Kachh −0.04 0.06 0.92 ± 0.13 ± 0.17 −0.1 ** 0.03 0.95 ± 0.06 ± 0.08 −0.15 ** 0.02 0.98 ± 0.04 ± 0.05 −0.07 ** 0.01 0.97 ± 0.01 ± 0.01 
23 Konkan & Goa −0.55 ** 0.15 0.93 ± 0.29 ± 0.39 −0.86 ** 0.13 0.94 ± 0.26 ± 0.34 0.42 ** 0.11 0.94 ± 0.21 ± 0.28 −0.14 ** 0.01 0.99 ± 0.02 ± 0.03 
24 Madhya Maharashtra −0.16 ** 0.04 0.98 ± 0.08 ± 0.1 −0.16 ** 0.06 0.95 ± 0.12 ± 0.16 0.09 0.05 0.93 ± 0.1 ± 0.13 −0.12 ** 0.01 0.98 ± 0.01 ± 0.02 
25 Marathwada −0.24 ** 0.04 0.99 ± 0.07 ± 0.1 −0.09 * 0.04 0.97 ± 0.08 ± 0.1 0.14 0.11 0.87 ± 0.22 ± 0.28 −0.07 ** 0.01 0.97 ± 0.02 ± 0.03 
26 Vidarbha −0.14 0.11 0.91 ± 0.21 ± 0.28 −0.39 ** 0.06 0.95 ± 0.11 ± 0.15 0.17 ** 0.03 0.99 ± 0.05 ± 0.07 −0.19 ** ± 0.01 ± 0.01 
27 Chhattisgarh −0.36 ** 0.09 0.96 ± 0.17 ± 0.22 −0.7 ** 0.09 0.95 ± 0.17 ± 0.22 0.66 ** 0.02 ± 0.04 ± 0.05 −0.29 ** 0.01 0.99 ± 0.02 ± 0.02 
28 Coastal Andhra Pradesh −0.03 0.19 0.87 ± 0.37 ± 0.49 −0.25 ** 0.07 0.99 ± 0.13 ± 0.18 −0.3 0.39 0.81 ± 0.76 ± 0.99 0.11 * 0.04 0.89 ± 0.08 ± 0.11 
29 Telangana 0.11 0.1 0.94 ± 0.2 ± 0.26 −0.31 ** 0.05 0.97 ± 0.09 ± 0.12 0.31 * 0.15 0.87 ± 0.3 ± 0.39 −0.04 ** 0.01 0.96 ± 0.03 ± 0.04 
30 Rayalaseema 0.47 ** 0.09 0.95 ± 0.17 ± 0.22 −0.92 ** 0.17 0.87 ± 0.33 ± 0.43 0.96 ** 0.04 0.99 ± 0.08 ± 0.11 −0.02 * 0.01 0.98 ± 0.02 ± 0.03 
31 Tamil Nadu & Puducherry 1.5 ** 0.07 0.97 ± 0.14 ± 0.19 −1.73 ** 0.14 0.94 ± 0.27 ± 0.35 1.31 ** 0.1 0.98 ± 0.19 ± 0.26 −0.29 ** 0.01 0.98 ± 0.03 ± 0.04 
32 Coastal Karnataka 1.03 ** 0.32 0.9 ± 0.63 ± 0.83 −0.96 ** 0.37 0.91 ± 0.72 ± 0.95 2.5 ** 0.18 0.96 ± 0.36 ± 0.47 −0.01 0.03 0.98 ± 0.05 ± 0.07 
33 North Interior Karnataka 0.04 0.05 0.98 ± 0.09 ± 0.12 −0.01 0.08 0.96 ± 0.17 ± 0.22 1.19 ** 0.11 0.92 ± 0.22 ± 0.29 0.03 ** 0.01 0.98 ± 0.02 ± 0.02 
34 South Interior Karnataka 0.68 ** 0.12 0.92 ± 0.24 ± 0.31 −0.55 ** 0.06 0.98 ± 0.12 ± 0.16 2.34 ** 0.11 0.96 ± 0.21 ± 0.27 −0.12 ** 0.01 0.99 ± 0.02 ± 0.03 
35 Kerala 2.75 ** 0.41 0.92 ± 0.8 ± 1.05 −4.08 ** 0.21 0.97 ± 0.42 ± 0.55 4.41 ** 0.18 0.98 ± 0.34 ± 0.45 −0.93 ** 0.04 0.97 ± 0.09 ± 0.11 
MSD no.MSD nameQDT1
QDT2
QDT3
120
ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99
Arunachal Pradesh 6.05 ** 0.51 0.93 ± 1 ± 1.31 −6.17 ** 0.42 0.97 ± 0.82 ± 1.08 −7.22 ** 0.4 0.97 ± 0.78 ± 1.02 −0.12 0.07 0.98 ± 0.13 ± 0.18 
Assam & Meghalaya 1.46 ** 0.27 0.96 ± 0.53 ± 0.7 −5.19 ** 0.29 0.97 ± 0.57 ± 0.75 0.02 0.24 0.97 ± 0.46 ± 0.61 −0.32 ** 0.05 0.97 ± 0.09 ± 0.12 
Nagaland, Manipur, Mizoram & Tripura −0.06 0.27 0.96 ± 0.53 ± 0.7 −4.63 ** 0.2 0.98 ± 0.4 ± 0.52 −2.94 ** 0.25 0.97 ± 0.48 ± 0.63 −0.4 ** 0.04 0.97 ± 0.09 ± 0.11 
Sub-Himalayan West Bengal & Sikkim 0.46 0.45 0.83 ± 0.87 ± 1.15 −2.52 ** 0.15 0.99 ± 0.29 ± 0.38 1.74 ** 0.16 0.97 ± 0.31 ± 0.41 0.52 ** 0.02 0.99 ± 0.05 ± 0.06 
Gangetic West Bengal −2.6 ** 0.19 0.94 ± 0.37 ± 0.48 0.16 0.28 0.9 ± 0.56 ± 0.73 −0.95 ** 0.08 0.99 ± 0.16 ± 0.22 0.01 0.02 0.98 ± 0.04 ± 0.05 
Odisha −1.3 ** 0.09 0.98 ± 0.17 ± 0.22 −0.25 ** 0.06 0.98 ± 0.11 ± 0.14 −1.16 ** 0.18 0.94 ± 0.36 ± 0.47 0.15 ** 0.03 0.94 ± 0.06 ± 0.07 
Jharkhand −1.23 ** 0.11 0.94 ± 0.22 ± 0.29 −0.01 0.11 0.94 ± 0.22 ± 0.3 0.49 ** 0.1 0.95 ± 0.19 ± 0.25 0.04 ** 0.01 0.98 ± 0.03 ± 0.04 
Bihar −1.07 ** 0.1 0.94 ± 0.19 ± 0.26 −0.02 0.12 0.92 ± 0.24 ± 0.32 0.72 ** 0.07 0.97 ± 0.14 ± 0.18 0.17 ** 0.02 0.97 ± 0.03 ± 0.04 
10 East Uttar Pradesh −0.63 ** 0.03 0.99 ± 0.07 ± 0.09 −0.08 0.05 0.95 ± 0.11 ± 0.14 0.08 0.05 0.97 ± 0.09 ± 0.12 0.03 ** ± 0.01 ± 0.01 
11 West Uttar Pradesh −0.76 ** 0.09 0.9 ± 0.17 ± 0.23 0.02 0.99 ± 0.04 ± 0.06 0.22 ** 0.04 0.98 ± 0.09 ± 0.11 0.05 ** 0.01 0.97 ± 0.02 ± 0.02 
12 Uttarakhand −3.21 ** 0.22 0.92 ± 0.43 ± 0.56 1.12 ** 0.11 0.97 ± 0.22 ± 0.29 −0.09 0.09 0.99 ± 0.18 ± 0.24 0.53 ** 0.02 0.99 ± 0.03 ± 0.04 
13 Haryana, Chandigarh & New Delhi −0.77 ** 0.06 0.95 ± 0.13 ± 0.17 0.34 ** 0.05 0.92 ± 0.1 ± 0.14 0.32 ** 0.09 0.96 ± 0.17 ± 0.23 0.21 ** 0.01 0.98 ± 0.02 ± 0.02 
14 Punjab −1.16 ** 0.08 0.95 ± 0.16 ± 0.21 0.31 ** 0.04 0.98 ± 0.07 ± 0.09 0.02 0.13 0.93 ± 0.26 ± 0.34 0.2 ** 0.02 0.95 ± 0.03 ± 0.04 
15 Himachal Pradesh −2.08 ** 0.51 0.73 ± 1 ± 1.32 −1.15 ** 0.16 0.96 ± 0.32 ± 0.42 −3.94 ** 0.17 0.98 ± 0.32 ± 0.43 0.23 ** 0.02 0.99 ± 0.05 ± 0.06 
16 Jammu & Kashmir 0.96 ** 0.06 0.98 ± 0.12 ± 0.16 0.43 0.24 0.9 ± 0.47 ± 0.62 −7.89 ** 0.38 0.93 ± 0.75 ± 0.99 1.43 ** 0.03 0.98 ± 0.06 ± 0.08 
17 West Rajasthan −0.42 ** 0.03 0.98 ± 0.05 ± 0.07 0.29 ** 0.04 0.88 ± 0.08 ± 0.11 0.05 0.06 0.93 ± 0.12 ± 0.15 0.13 ** 0.01 0.97 ± 0.01 ± 0.02 
18 East Rajasthan −0.44 ** 0.07 0.91 ± 0.13 ± 0.17 0.2 ** 0.03 0.95 ± 0.06 ± 0.08 0.18 ** 0.04 0.95 ± 0.08 ± 0.11 0.03 ** 0.01 0.96 ± 0.01 ± 0.02 
19 West Madhya Pradesh −0.29 ** 0.02 0.98 ± 0.04 ± 0.06 −0.21 ** 0.02 0.98 ± 0.04 ± 0.06 0.2 ** 0.05 0.89 ± 0.11 ± 0.14 −0.06 ** 0.01 0.95 ± 0.01 ± 0.02 
20 East Madhya Pradesh −0.33 ** 0.1 0.92 ± 0.19 ± 0.25 −0.38 ** 0.06 0.95 ± 0.11 ± 0.14 0.45 ** 0.06 0.94 ± 0.11 ± 0.15 −0.18 ** 0.99 ± 0.01 ± 0.01 
21 Gujarat region −0.45 ** 0.04 0.96 ± 0.08 ± 0.11 −0.01 0.03 0.97 ± 0.05 ± 0.07 −0.2 ** 0.03 0.94 ± 0.05 ± 0.07 −0.08 ** 0.01 0.95 ± 0.01 ± 0.02 
22 Saurashtra & Kachh −0.04 0.06 0.92 ± 0.13 ± 0.17 −0.1 ** 0.03 0.95 ± 0.06 ± 0.08 −0.15 ** 0.02 0.98 ± 0.04 ± 0.05 −0.07 ** 0.01 0.97 ± 0.01 ± 0.01 
23 Konkan & Goa −0.55 ** 0.15 0.93 ± 0.29 ± 0.39 −0.86 ** 0.13 0.94 ± 0.26 ± 0.34 0.42 ** 0.11 0.94 ± 0.21 ± 0.28 −0.14 ** 0.01 0.99 ± 0.02 ± 0.03 
24 Madhya Maharashtra −0.16 ** 0.04 0.98 ± 0.08 ± 0.1 −0.16 ** 0.06 0.95 ± 0.12 ± 0.16 0.09 0.05 0.93 ± 0.1 ± 0.13 −0.12 ** 0.01 0.98 ± 0.01 ± 0.02 
25 Marathwada −0.24 ** 0.04 0.99 ± 0.07 ± 0.1 −0.09 * 0.04 0.97 ± 0.08 ± 0.1 0.14 0.11 0.87 ± 0.22 ± 0.28 −0.07 ** 0.01 0.97 ± 0.02 ± 0.03 
26 Vidarbha −0.14 0.11 0.91 ± 0.21 ± 0.28 −0.39 ** 0.06 0.95 ± 0.11 ± 0.15 0.17 ** 0.03 0.99 ± 0.05 ± 0.07 −0.19 ** ± 0.01 ± 0.01 
27 Chhattisgarh −0.36 ** 0.09 0.96 ± 0.17 ± 0.22 −0.7 ** 0.09 0.95 ± 0.17 ± 0.22 0.66 ** 0.02 ± 0.04 ± 0.05 −0.29 ** 0.01 0.99 ± 0.02 ± 0.02 
28 Coastal Andhra Pradesh −0.03 0.19 0.87 ± 0.37 ± 0.49 −0.25 ** 0.07 0.99 ± 0.13 ± 0.18 −0.3 0.39 0.81 ± 0.76 ± 0.99 0.11 * 0.04 0.89 ± 0.08 ± 0.11 
29 Telangana 0.11 0.1 0.94 ± 0.2 ± 0.26 −0.31 ** 0.05 0.97 ± 0.09 ± 0.12 0.31 * 0.15 0.87 ± 0.3 ± 0.39 −0.04 ** 0.01 0.96 ± 0.03 ± 0.04 
30 Rayalaseema 0.47 ** 0.09 0.95 ± 0.17 ± 0.22 −0.92 ** 0.17 0.87 ± 0.33 ± 0.43 0.96 ** 0.04 0.99 ± 0.08 ± 0.11 −0.02 * 0.01 0.98 ± 0.02 ± 0.03 
31 Tamil Nadu & Puducherry 1.5 ** 0.07 0.97 ± 0.14 ± 0.19 −1.73 ** 0.14 0.94 ± 0.27 ± 0.35 1.31 ** 0.1 0.98 ± 0.19 ± 0.26 −0.29 ** 0.01 0.98 ± 0.03 ± 0.04 
32 Coastal Karnataka 1.03 ** 0.32 0.9 ± 0.63 ± 0.83 −0.96 ** 0.37 0.91 ± 0.72 ± 0.95 2.5 ** 0.18 0.96 ± 0.36 ± 0.47 −0.01 0.03 0.98 ± 0.05 ± 0.07 
33 North Interior Karnataka 0.04 0.05 0.98 ± 0.09 ± 0.12 −0.01 0.08 0.96 ± 0.17 ± 0.22 1.19 ** 0.11 0.92 ± 0.22 ± 0.29 0.03 ** 0.01 0.98 ± 0.02 ± 0.02 
34 South Interior Karnataka 0.68 ** 0.12 0.92 ± 0.24 ± 0.31 −0.55 ** 0.06 0.98 ± 0.12 ± 0.16 2.34 ** 0.11 0.96 ± 0.21 ± 0.27 −0.12 ** 0.01 0.99 ± 0.02 ± 0.03 
35 Kerala 2.75 ** 0.41 0.92 ± 0.8 ± 1.05 −4.08 ** 0.21 0.97 ± 0.42 ± 0.55 4.41 ** 0.18 0.98 ± 0.34 ± 0.45 −0.93 ** 0.04 0.97 ± 0.09 ± 0.11 

*Trend at 5% significance level (p<0.05); **Trend at 1% significance level (p<0.01); σs, slope of SD (mm); ρ, Correlation; CL95 and CL99, Lower & upper confidence limit at 95 and 99%.

Figure 12

(a) ITA of pre-monsoon season (MAM) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different the meteorological sub-divisions of India. (b) ITA of pre-monsoon season (MAM) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different the meteorological sub-divisions of India

Figure 12

(a) ITA of pre-monsoon season (MAM) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different the meteorological sub-divisions of India. (b) ITA of pre-monsoon season (MAM) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different the meteorological sub-divisions of India

Close modal
The rainfall trends identified by ITA during the monsoon season are given in Table 4 and the ITA graphical results can be seen in Figure 13(a) and 13(b). Around 91.2% of the MSDs showed significant trends in the monsoon season with 47.1% MSDs showing significantly decreasing and 44.1% MSDs showing a significantly increasing trend during CLM120 respectively. During QDT1 of the monsoon season, only 20.6% of the MSDs showed a significantly decreasing trend, but 67.6% of the MSDs acquainted significantly decreasing trend during QDT2 at either 95% or 99% confidence level. During QDT3, about 47.1% of the MSDs viz: Arunachal Pradesh, Assam & Meghalaya, Bihar, Uttar Pradesh, West Bengal, Jharkhand, Kerala, and Sikkim showed a statistically significant decreasing trend whereas around 35.3% MSDs viz: Chhattisgarh, Coastal Andhra Pradesh, Rayalaseema, Rajasthan, Gujarat region, Konkan & Goa, Madhya Maharashtra, Vidarbha, Odisha, and Karnataka exhibited a significantly rising trend in monsoon rainfall at a 99% confidence level. Overall, decreasing trends accompanied by the highest degree of change in magnitude in most of the MSDs during monsoon season were observed in recent times, i.e. QDT2 and QDT3. Our results are in conformity with the trend analysis of Das et al. (2014) which showed upward trends in rainfall in the eastern coast, northern hilly region of the Himalayas, and Deccan Plateau during the monsoon season in various MSDs of India using gridded data of 1971–2005. The presented outcomes are also in agreement with similar works carried out at MSDs level in India (Meshram et al. 2017; Singh et al. 2021). Sinha et al. (2015) reported a decline in summer monsoon rainfall during the past few decades over large parts of South Asia. Guhathakurta & Rajeevan (2008) also reported a significant decreasing linear trend in the monsoonal rainfall over Jharkhand, Chhattisgarh and Kerala whereas significant increasing trend over West Bengal, Western Uttar Pradesh, Jammu and Kashmir, Konkan, and Goa, Madhya Maharashtra, Rayalaseema, coastal Andhra Pradesh, and north interior Karnataka which is in conformity with our results. This decrease in the rainfall trend may be due to an increase in the anthropogenic aerosol concentration over the northern hemisphere which also contributes to climate change (Kulkarni et al. 2020). Global warming has resulted in the anomalous warming of the Indo-Pacific warm pool (Annamalai et al. 2013; Guhathakurta et al. 2014) or weakening of the land-ocean temperature gradient (Kulkarni 2012) which is responsible for decreasing rainfall trend.
Table 4

Results of ITA method during monsoon seasons at meteorological sub-division level in India during different time periods

MSD no.MSD nameQDT1
QDT2
QDT3
120
ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99
Arunachal Pradesh 21.92 ** 0.71 0.98 ± 1.4 ± 1.84 −3.6 ** 1.28 0.93 ± 2.51 ± 3.3 −7.5 ** 0.56 0.97 ± 1.1 ± 1.45 −4.28 ** 0.11 0.99 ± 0.21 ± 0.28 
Assam & Meghalaya 1.54 ** 0.35 0.94 ± 0.69 ± 0.9 3.91 ** 0.8 0.91 ± 1.57 ± 2.07 −10.6 ** 0.5 0.97 ± 0.98 ± 1.28 1.62 ** 0.06 0.99 ± 0.11 ± 0.14 
Nagaland, Manipur, Mizoram & Tripura 5 ** 0.32 0.92 ± 0.63 ± 0.83 −3.12 ** 0.42 0.94 ± 0.82 ± 1.08 −0.12 0.64 0.9 ± 1.25 ± 1.64 0.15 ** 0.06 0.97 ± 0.11 ± 0.14 
Sub-Himalayan West Bengal & Sikkim −2.53 ** 0.42 0.98 ± 0.82 ± 1.08 −3.52 ** 0.6 0.96 ± 1.18 ± 1.55 −9.45 ** 1.16 0.91 ± 2.28 ± 3 −1.2 ** 0.09 0.98 ± 0.18 ± 0.24 
Gangetic West Bengal 0.7 0.38 0.96 ± 0.75 ± 0.99 3.48 ** 0.45 0.96 ± 0.89 ± 1.17 −5.48 ** 0.28 0.98 ± 0.55 ± 0.73 1.19 ** 0.06 0.98 ± 0.11 ± 0.15 
Odisha 2.88 ** 0.19 0.98 ± 0.37 ± 0.49 −4.21 ** 0.2 0.98 ± 0.39 ± 0.51 4.18 ** 0.51 0.93 ± 0.99 ± 1.3 −0.55 ** 0.04 0.98 ± 0.08 ± 0.1 
Jharkhand 2.22 ** 0.33 0.95 ± 0.65 ± 0.86 −3.82 ** 0.26 0.98 ± 0.51 ± 0.67 −5.43 ** 0.22 0.99 ± 0.43 ± 0.56 −1.23 ** 0.03 0.99 ± 0.06 ± 0.08 
Bihar −1.14 * 0.45 0.95 ± 0.89 ± 1.17 −3.95 ** 0.34 0.95 ± 0.66 ± 0.86 −5.88 ** 0.41 0.96 ± 0.8 ± 1.05 −0.98 ** 0.06 0.98 ± 0.11 ± 0.15 
10 East Uttar Pradesh 4.58 ** 0.39 0.97 ± 0.76 ± 1 −2.29 ** 0.41 0.96 ± 0.81 ± 1.06 −5.11 ** 0.32 0.96 ± 0.63 ± 0.83 −1.5 ** 0.07 0.97 ± 0.14 ± 0.18 
11 West Uttar Pradesh 4.08 ** 0.47 0.95 ± 0.93 ± 1.22 −0.29 0.23 0.98 ± 0.45 ± 0.59 −4.77 ** 0.58 0.9 ± 1.14 ± 1.5 −0.69 ** 0.05 0.98 ± 0.1 ± 0.13 
12 Uttarakhand 0.34 0.55 0.96 ± 1.09 ± 1.43 −3.34 ** 0.61 0.92 ± 1.19 ± 1.56 5.74 ** 0.65 0.93 ± 1.28 ± 1.69 −1.69 ** 0.07 0.98 ± 0.13 ± 0.17 
13 Haryana, Chandigarh & New Delhi −0.17 0.32 0.96 ± 0.62 ± 0.82 0.76 ** 0.26 0.97 ± 0.5 ± 0.66 −2.57 ** 0.28 0.97 ± 0.55 ± 0.73 −0.09 * 0.04 0.98 ± 0.08 ± 0.1 
14 Punjab 0.14 0.32 0.96 ± 0.63 ± 0.82 −0.95 * 0.46 0.9 ± 0.9 ± 1.19 −1.24 ** 0.3 0.97 ± 0.58 ± 0.76 0.42 ** 0.05 0.97 ± 0.1 ± 0.13 
15 Himachal Pradesh 3.18 ** 0.39 0.97 ± 0.77 ± 1.02 −7.88 ** 0.43 0.96 ± 0.84 ± 1.1 −2.97 ** 0.43 0.95 ± 0.85 ± 1.11 −2.14 ** 0.06 0.98 ± 0.11 ± 0.15 
16 Jammu & Kashmir −0.58 ** 0.13 0.93 ± 0.26 ± 0.35 −0.88 * 0.35 0.87 ± 0.69 ± 0.91 −1.7 ** 0.47 0.9 ± 0.93 ± 1.22 1.37 ** 0.03 0.98 ± 0.06 ± 0.08 
17 West Rajasthan −0.15 0.28 0.95 ± 0.55 ± 0.72 1.28 ** 0.26 0.95 ± 0.5 ± 0.66 1.89 ** 0.26 0.94 ± 0.5 ± 0.66 0.35 ** 0.04 0.97 ± 0.08 ± 0.11 
18 East Rajasthan 1.59 ** 0.43 0.96 ± 0.84 ± 1.1 −1.97 ** 0.34 0.96 ± 0.67 ± 0.88 2.38 ** 0.29 0.96 ± 0.56 ± 0.73 −0.09 0.05 0.98 ± 0.1 ± 0.13 
19 West Madhya Pradesh 4.39 ** 0.33 0.97 ± 0.65 ± 0.86 −1.49 ** 0.46 0.95 ± 0.91 ± 1.19 1.35 ** 0.38 0.96 ± 0.74 ± 0.98 0.12 0.07 0.97 ± 0.13 ± 0.18 
20 East Madhya Pradesh 5.02 ** 0.4 0.95 ± 0.79 ± 1.04 −2.76 ** 0.41 0.96 ± 0.81 ± 1.06 −2.73 ** 0.64 0.91 ± 1.25 ± 1.64 −1.55 ** 0.04 0.99 ± 0.08 ± 0.11 
21 Gujarat region 2.78 ** 0.71 0.93 ± 1.4 ± 1.84 −4.23 ** 0.85 0.93 ± 1.67 ± 2.19 6.08 ** 0.33 0.99 ± 0.65 ± 0.86 −0.06 0.08 0.98 ± 0.15 ± 0.2 
22 Saurashtra & Kachh −0.15 0.69 0.87 ± 1.36 ± 1.79 −0.69 0.4 0.96 ± 0.78 ± 1.03 11.24 ** 0.36 0.98 ± 0.71 ± 0.93 1.11 ** 0.05 0.99 ± 0.1 ± 0.13 
23 Konkan & Goa 15.13 ** 0.73 0.98 ± 1.43 ± 1.88 −15.98 ** 0.73 0.98 ± 1.44 ± 1.89 9.35 ** 1.03 0.97 ± 2.01 ± 2.65 2.15 ** 0.15 0.98 ± 0.3 ± 0.39 
24 Madhya Maharashtra 2.26 ** 0.28 0.96 ± 0.55 ± 0.73 −1.64 ** 0.45 0.89 ± 0.89 ± 1.17 4.41 ** 0.23 0.98 ± 0.45 ± 0.59 −0.13 * 0.06 0.95 ± 0.12 ± 0.16 
25 Marathwada −0.17 0.28 0.98 ± 0.54 ± 0.71 −2.48 ** 0.32 0.97 ± 0.62 ± 0.82 −1.75 ** 0.43 0.95 ± 0.85 ± 1.12 −0.32 ** 0.06 0.97 ± 0.12 ± 0.16 
26 Vidarbha 3.75 ** 0.49 0.94 ± 0.96 ± 1.26 −4.64 ** 0.4 0.96 ± 0.78 ± 1.02 1.2 ** 0.35 0.97 ± 0.68 ± 0.9 −0.89 ** 0.05 0.98 ± 0.1 ± 0.13 
27 Chhattisgarh 4.4 ** 0.22 0.98 ± 0.44 ± 0.58 −5.5 ** 0.68 0.9 ± 1.33 ± 1.74 0.4 0.67 0.82 ± 1.32 ± 1.74 −1.73 ** 0.06 0.97 ± 0.13 ± 0.16 
28 Coastal Andhra Pradesh −1.58 ** 0.23 0.96 ± 0.45 ± 0.59 −1.6 ** 0.21 0.97 ± 0.41 ± 0.54 1.55 ** 0.32 0.94 ± 0.64 ± 0.84 0.61 ** 0.02 0.99 ± 0.03 ± 0.05 
29 Telangana 0.5 0.39 0.94 ± 0.77 ± 1.02 −2.29 ** 0.4 0.94 ± 0.78 ± 1.03 −0.57 0.35 0.97 ± 0.69 ± 0.91 0.37 ** 0.04 0.99 ± 0.08 ± 0.1 
30 Rayalaseema −2.38 ** 0.36 0.9 ± 0.71 ± 0.94 1.05 ** 0.16 0.97 ± 0.31 ± 0.41 0.13 0.38 0.93 ± 0.74 ± 0.98 0.63 ** 0.03 0.99 ± 0.05 ± 0.06 
31 Tamil Nadu & Puducherry −1.54 ** 0.15 0.96 ± 0.29 ± 0.38 0.78 ** 0.08 0.98 ± 0.15 ± 0.2 −1 0.57 0.85 ± 1.12 ± 1.47 0.27 ** 0.06 0.91 ± 0.11 ± 0.15 
32 Coastal Karnataka 10.15 ** 0.93 0.95 ± 1.82 ± 2.39 4.66 ** 0.9 0.98 ± 1.77 ± 2.32 −2.92 ** 0.99 0.96 ± 1.94 ± 2.55 3.53 ** 0.17 0.97 ± 0.32 ± 0.43 
33 North Interior Karnataka −1.86 ** 0.19 0.97 ± 0.38 ± 0.5 −0.16 0.16 0.97 ± 0.32 ± 0.42 0.13 0.24 0.97 ± 0.47 ± 0.62 0.33 ** 0.03 0.99 ± 0.05 ± 0.07 
34 South Interior Karnataka −0.6 0.27 0.95 ± 0.52 ± 0.69 1.81 ** 0.19 0.97 ± 0.37 ± 0.49 1.64 ** 0.2 0.97 ± 0.39 ± 0.51 0.97 ** 0.03 0.99 ± 0.05 ± 0.07 
35 Kerala 8.72 ** 1.48 0.86 ± 2.91 ± 3.82 −6.89 ** 0.58 0.98 ± 1.14 ± 1.5 −4.7 ** 0.59 0.98 ± 1.17 ± 1.53 −3.64 ** 0.13 0.98 ± 0.25 ± 0.32 
MSD no.MSD nameQDT1
QDT2
QDT3
120
ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99
Arunachal Pradesh 21.92 ** 0.71 0.98 ± 1.4 ± 1.84 −3.6 ** 1.28 0.93 ± 2.51 ± 3.3 −7.5 ** 0.56 0.97 ± 1.1 ± 1.45 −4.28 ** 0.11 0.99 ± 0.21 ± 0.28 
Assam & Meghalaya 1.54 ** 0.35 0.94 ± 0.69 ± 0.9 3.91 ** 0.8 0.91 ± 1.57 ± 2.07 −10.6 ** 0.5 0.97 ± 0.98 ± 1.28 1.62 ** 0.06 0.99 ± 0.11 ± 0.14 
Nagaland, Manipur, Mizoram & Tripura 5 ** 0.32 0.92 ± 0.63 ± 0.83 −3.12 ** 0.42 0.94 ± 0.82 ± 1.08 −0.12 0.64 0.9 ± 1.25 ± 1.64 0.15 ** 0.06 0.97 ± 0.11 ± 0.14 
Sub-Himalayan West Bengal & Sikkim −2.53 ** 0.42 0.98 ± 0.82 ± 1.08 −3.52 ** 0.6 0.96 ± 1.18 ± 1.55 −9.45 ** 1.16 0.91 ± 2.28 ± 3 −1.2 ** 0.09 0.98 ± 0.18 ± 0.24 
Gangetic West Bengal 0.7 0.38 0.96 ± 0.75 ± 0.99 3.48 ** 0.45 0.96 ± 0.89 ± 1.17 −5.48 ** 0.28 0.98 ± 0.55 ± 0.73 1.19 ** 0.06 0.98 ± 0.11 ± 0.15 
Odisha 2.88 ** 0.19 0.98 ± 0.37 ± 0.49 −4.21 ** 0.2 0.98 ± 0.39 ± 0.51 4.18 ** 0.51 0.93 ± 0.99 ± 1.3 −0.55 ** 0.04 0.98 ± 0.08 ± 0.1 
Jharkhand 2.22 ** 0.33 0.95 ± 0.65 ± 0.86 −3.82 ** 0.26 0.98 ± 0.51 ± 0.67 −5.43 ** 0.22 0.99 ± 0.43 ± 0.56 −1.23 ** 0.03 0.99 ± 0.06 ± 0.08 
Bihar −1.14 * 0.45 0.95 ± 0.89 ± 1.17 −3.95 ** 0.34 0.95 ± 0.66 ± 0.86 −5.88 ** 0.41 0.96 ± 0.8 ± 1.05 −0.98 ** 0.06 0.98 ± 0.11 ± 0.15 
10 East Uttar Pradesh 4.58 ** 0.39 0.97 ± 0.76 ± 1 −2.29 ** 0.41 0.96 ± 0.81 ± 1.06 −5.11 ** 0.32 0.96 ± 0.63 ± 0.83 −1.5 ** 0.07 0.97 ± 0.14 ± 0.18 
11 West Uttar Pradesh 4.08 ** 0.47 0.95 ± 0.93 ± 1.22 −0.29 0.23 0.98 ± 0.45 ± 0.59 −4.77 ** 0.58 0.9 ± 1.14 ± 1.5 −0.69 ** 0.05 0.98 ± 0.1 ± 0.13 
12 Uttarakhand 0.34 0.55 0.96 ± 1.09 ± 1.43 −3.34 ** 0.61 0.92 ± 1.19 ± 1.56 5.74 ** 0.65 0.93 ± 1.28 ± 1.69 −1.69 ** 0.07 0.98 ± 0.13 ± 0.17 
13 Haryana, Chandigarh & New Delhi −0.17 0.32 0.96 ± 0.62 ± 0.82 0.76 ** 0.26 0.97 ± 0.5 ± 0.66 −2.57 ** 0.28 0.97 ± 0.55 ± 0.73 −0.09 * 0.04 0.98 ± 0.08 ± 0.1 
14 Punjab 0.14 0.32 0.96 ± 0.63 ± 0.82 −0.95 * 0.46 0.9 ± 0.9 ± 1.19 −1.24 ** 0.3 0.97 ± 0.58 ± 0.76 0.42 ** 0.05 0.97 ± 0.1 ± 0.13 
15 Himachal Pradesh 3.18 ** 0.39 0.97 ± 0.77 ± 1.02 −7.88 ** 0.43 0.96 ± 0.84 ± 1.1 −2.97 ** 0.43 0.95 ± 0.85 ± 1.11 −2.14 ** 0.06 0.98 ± 0.11 ± 0.15 
16 Jammu & Kashmir −0.58 ** 0.13 0.93 ± 0.26 ± 0.35 −0.88 * 0.35 0.87 ± 0.69 ± 0.91 −1.7 ** 0.47 0.9 ± 0.93 ± 1.22 1.37 ** 0.03 0.98 ± 0.06 ± 0.08 
17 West Rajasthan −0.15 0.28 0.95 ± 0.55 ± 0.72 1.28 ** 0.26 0.95 ± 0.5 ± 0.66 1.89 ** 0.26 0.94 ± 0.5 ± 0.66 0.35 ** 0.04 0.97 ± 0.08 ± 0.11 
18 East Rajasthan 1.59 ** 0.43 0.96 ± 0.84 ± 1.1 −1.97 ** 0.34 0.96 ± 0.67 ± 0.88 2.38 ** 0.29 0.96 ± 0.56 ± 0.73 −0.09 0.05 0.98 ± 0.1 ± 0.13 
19 West Madhya Pradesh 4.39 ** 0.33 0.97 ± 0.65 ± 0.86 −1.49 ** 0.46 0.95 ± 0.91 ± 1.19 1.35 ** 0.38 0.96 ± 0.74 ± 0.98 0.12 0.07 0.97 ± 0.13 ± 0.18 
20 East Madhya Pradesh 5.02 ** 0.4 0.95 ± 0.79 ± 1.04 −2.76 ** 0.41 0.96 ± 0.81 ± 1.06 −2.73 ** 0.64 0.91 ± 1.25 ± 1.64 −1.55 ** 0.04 0.99 ± 0.08 ± 0.11 
21 Gujarat region 2.78 ** 0.71 0.93 ± 1.4 ± 1.84 −4.23 ** 0.85 0.93 ± 1.67 ± 2.19 6.08 ** 0.33 0.99 ± 0.65 ± 0.86 −0.06 0.08 0.98 ± 0.15 ± 0.2 
22 Saurashtra & Kachh −0.15 0.69 0.87 ± 1.36 ± 1.79 −0.69 0.4 0.96 ± 0.78 ± 1.03 11.24 ** 0.36 0.98 ± 0.71 ± 0.93 1.11 ** 0.05 0.99 ± 0.1 ± 0.13 
23 Konkan & Goa 15.13 ** 0.73 0.98 ± 1.43 ± 1.88 −15.98 ** 0.73 0.98 ± 1.44 ± 1.89 9.35 ** 1.03 0.97 ± 2.01 ± 2.65 2.15 ** 0.15 0.98 ± 0.3 ± 0.39 
24 Madhya Maharashtra 2.26 ** 0.28 0.96 ± 0.55 ± 0.73 −1.64 ** 0.45 0.89 ± 0.89 ± 1.17 4.41 ** 0.23 0.98 ± 0.45 ± 0.59 −0.13 * 0.06 0.95 ± 0.12 ± 0.16 
25 Marathwada −0.17 0.28 0.98 ± 0.54 ± 0.71 −2.48 ** 0.32 0.97 ± 0.62 ± 0.82 −1.75 ** 0.43 0.95 ± 0.85 ± 1.12 −0.32 ** 0.06 0.97 ± 0.12 ± 0.16 
26 Vidarbha 3.75 ** 0.49 0.94 ± 0.96 ± 1.26 −4.64 ** 0.4 0.96 ± 0.78 ± 1.02 1.2 ** 0.35 0.97 ± 0.68 ± 0.9 −0.89 ** 0.05 0.98 ± 0.1 ± 0.13 
27 Chhattisgarh 4.4 ** 0.22 0.98 ± 0.44 ± 0.58 −5.5 ** 0.68 0.9 ± 1.33 ± 1.74 0.4 0.67 0.82 ± 1.32 ± 1.74 −1.73 ** 0.06 0.97 ± 0.13 ± 0.16 
28 Coastal Andhra Pradesh −1.58 ** 0.23 0.96 ± 0.45 ± 0.59 −1.6 ** 0.21 0.97 ± 0.41 ± 0.54 1.55 ** 0.32 0.94 ± 0.64 ± 0.84 0.61 ** 0.02 0.99 ± 0.03 ± 0.05 
29 Telangana 0.5 0.39 0.94 ± 0.77 ± 1.02 −2.29 ** 0.4 0.94 ± 0.78 ± 1.03 −0.57 0.35 0.97 ± 0.69 ± 0.91 0.37 ** 0.04 0.99 ± 0.08 ± 0.1 
30 Rayalaseema −2.38 ** 0.36 0.9 ± 0.71 ± 0.94 1.05 ** 0.16 0.97 ± 0.31 ± 0.41 0.13 0.38 0.93 ± 0.74 ± 0.98 0.63 ** 0.03 0.99 ± 0.05 ± 0.06 
31 Tamil Nadu & Puducherry −1.54 ** 0.15 0.96 ± 0.29 ± 0.38 0.78 ** 0.08 0.98 ± 0.15 ± 0.2 −1 0.57 0.85 ± 1.12 ± 1.47 0.27 ** 0.06 0.91 ± 0.11 ± 0.15 
32 Coastal Karnataka 10.15 ** 0.93 0.95 ± 1.82 ± 2.39 4.66 ** 0.9 0.98 ± 1.77 ± 2.32 −2.92 ** 0.99 0.96 ± 1.94 ± 2.55 3.53 ** 0.17 0.97 ± 0.32 ± 0.43 
33 North Interior Karnataka −1.86 ** 0.19 0.97 ± 0.38 ± 0.5 −0.16 0.16 0.97 ± 0.32 ± 0.42 0.13 0.24 0.97 ± 0.47 ± 0.62 0.33 ** 0.03 0.99 ± 0.05 ± 0.07 
34 South Interior Karnataka −0.6 0.27 0.95 ± 0.52 ± 0.69 1.81 ** 0.19 0.97 ± 0.37 ± 0.49 1.64 ** 0.2 0.97 ± 0.39 ± 0.51 0.97 ** 0.03 0.99 ± 0.05 ± 0.07 
35 Kerala 8.72 ** 1.48 0.86 ± 2.91 ± 3.82 −6.89 ** 0.58 0.98 ± 1.14 ± 1.5 −4.7 ** 0.59 0.98 ± 1.17 ± 1.53 −3.64 ** 0.13 0.98 ± 0.25 ± 0.32 

*Trend at 5% significance level (p<0.05); **Trend at 1% significance level (p<0.01); σs, slope of SD (mm); ρ, Correlation; CL95 and CL99, Lower & upper confidence limit at 95 and 99%.

Figure 13

(a) ITA of monsoon season (JJAS) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different meteorological sub-divisions of India. (b) ITA of monsoon season (JJAS) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different meteorological sub-divisions of India

Figure 13

(a) ITA of monsoon season (JJAS) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different meteorological sub-divisions of India. (b) ITA of monsoon season (JJAS) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different meteorological sub-divisions of India

Close modal
The trends in the post-monsoon rainfall spotted by ITA are summed up in Table 5 with its plots seen in Figure 14(a) and 14(b). Around 58.8% of the MSDs showed a significant decrease while 32.4% of the MSDs provided a significantly increasing trend during CLM120 respectively. The number of MSDs has increased in number over the time period with 11.8%, 52.9%, and 67.6% of the MSDs showing a significantly decreasing trend in post-monsoon rainfall during QDT1, QDT2 and QDT3. Only 14.7% of the MSDs viz: Chhattisgarh, Sub-Himalayan West Bengal & Sikkim, Gangetic West Bengal, Kerala, and Odisha showed a significantly increasing trend during QDT3, whereas a decreasing trend was observed over Arunachal Pradesh, Assam & Meghalaya, Bihar, Himachal Pradesh, Jammu & Kashmir, Uttarakhand, Vidarbha, Madhya Maharashtra, Marathwada, Tamil Nadu & Puducherry, and Vidarbha. Overall a decreasing trend in post-monsoon rainfall was observed in most of the MSDs lying in the study area during the last two QDTs. Our results are in conformity with Praveen et al. (2020) who observed a negative trend in post-monsoon rainfall after 1995, specifically in South India and North East India. Krishnakumar et al. (2009) also reported an increase in post-monsoon rainfall over Kerala due to an increase in tropical cyclone frequency over the Bay of Bengal (Singh et al. 2001).
Table 5

Results of ITA during post-monsoon seasons at meteorological sub-division level in India during different time periods

MSD no.MSD nameQDT1
QDT2
QDT3
120
ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99
Arunachal Pradesh 2.98 ** 0.21 0.95 ± 0.42 ± 0.55 −0.45 0.26 0.95 ± 0.51 ± 0.67 −2.33 ** 0.13 0.97 ± 0.26 ± 0.34 −0.36 ** 0.03 0.97 ± 0.07 ± 0.09 
Assam & Meghalaya 0.27 ** 0.1 0.98 ± 0.2 ± 0.27 0.11 0.16 0.96 ± 0.31 ± 0.41 −1.43 ** 0.17 0.96 ± 0.33 ± 0.44 0.12 ** 0.02 0.99 ± 0.03 ± 0.04 
Nagaland, Manipur, Mizoram & Tripura 1.18 ** 0.1 0.98 ± 0.2 ± 0.26 0.06 0.13 0.97 ± 0.25 ± 0.33 0.01 0.15 0.97 ± 0.3 ± 0.39 0.11 ** 0.02 0.99 ± 0.03 ± 0.05 
Sub-Himalayan West Bengal & Sikkim 0.59 0.3 0.93 ± 0.59 ± 0.77 1.63 ** 0.31 0.93 ± 0.61 ± 0.8 0.69 ** 0.1 0.98 ± 0.2 ± 0.26 0.09 ** 0.03 0.98 ± 0.06 ± 0.07 
Gangetic West Bengal 0.03 0.14 0.97 ± 0.28 ± 0.37 −1.24 ** 0.12 0.98 ± 0.24 ± 0.32 0.3 * 0.13 0.98 ± 0.26 ± 0.34 0.22 ** 0.02 0.99 ± 0.03 ± 0.04 
Odisha 1.18 ** 0.31 0.91 ± 0.62 ± 0.81 −2.4 ** 0.15 0.97 ± 0.28 ± 0.37 1.02 ** 0.23 0.96 ± 0.44 ± 0.58 −0.34 ** 0.03 0.97 ± 0.06 ± 0.08 
Jharkhand 0.95 ** 0.21 0.94 ± 0.42 ± 0.55 −0.57 ** 0.15 0.96 ± 0.29 ± 0.38 0.28 0.2 0.92 ± 0.39 ± 0.52 −0.07 ** 0.01 0.99 ± 0.02 ± 0.03 
Bihar 0.94 ** 0.23 0.89 ± 0.46 ± 0.6 0.9 ** 0.17 0.95 ± 0.34 ± 0.45 −0.18 * 0.09 0.97 ± 0.18 ± 0.24 0.02 0.02 0.98 ± 0.04 ± 0.05 
10 East Uttar Pradesh 0.02 0.18 0.92 ± 0.36 ± 0.47 −0.57 ** 0.19 0.89 ± 0.38 ± 0.5 −0.91 ** 0.11 0.94 ± 0.21 ± 0.28 −0.22 ** 0.01 0.99 ± 0.02 ± 0.03 
11 West Uttar Pradesh 0.41 ** 0.12 0.95 ± 0.23 ± 0.3 −1.24 ** 0.21 0.9 ± 0.4 ± 0.53 −0.59 ** 0.09 0.94 ± 0.18 ± 0.24 −0.27 ** 0.02 0.96 ± 0.04 ± 0.05 
12 Uttarakhand 1.03 ** 0.25 0.86 ± 0.48 ± 0.63 −1.42 ** 0.1 0.99 ± 0.2 ± 0.27 −1.11 ** 0.2 0.89 ± 0.4 ± 0.53 −0.38 ** 0.02 0.98 ± 0.04 ± 0.06 
13 Haryana, Chandigarh & New Delhi 0.02 0.09 0.91 ± 0.18 ± 0.24 −0.74 ** 0.11 0.93 ± 0.21 ± 0.28 −0.59 ** 0.05 0.97 ± 0.1 ± 0.13 −0.15 ** 0.01 0.99 ± 0.01 ± 0.02 
14 Punjab −0.01 0.13 0.83 ± 0.25 ± 0.33 −1.4 ** 0.23 0.9 ± 0.45 ± 0.59 −0.52 ** 0.05 0.96 ± 0.1 ± 0.13 −0.18 ** 0.03 0.86 ± 0.07 ± 0.09 
15 Himachal Pradesh 1.03 ** 0.08 0.98 ± 0.15 ± 0.2 −2.26 ** 0.34 0.87 ± 0.66 ± 0.86 −1.59 ** 0.1 0.98 ± 0.19 ± 0.25 −0.18 ** 0.02 0.97 ± 0.05 ± 0.06 
16 Jammu & Kashmir 0.57 ** 0.08 0.96 ± 0.15 ± 0.2 −0.31 ** 0.07 0.97 ± 0.14 ± 0.19 −2.75 ** 0.23 0.93 ± 0.45 ± 0.59 0.54 ** 0.01 0.99 ± 0.03 ± 0.04 
17 West Rajasthan −0.2 ** 0.04 0.91 ± 0.09 ± 0.11 0.02 0.03 0.92 ± 0.06 ± 0.09 −0.18 ** 0.04 0.96 ± 0.07 ± 0.1 0.02 ** 0.97 ± 0.01 ± 0.01 
18 East Rajasthan 0.21 ** 0.06 0.96 ± 0.12 ± 0.16 −0.1 0.11 0.91 ± 0.21 ± 0.28 −0.72 ** 0.06 0.95 ± 0.13 ± 0.17 −0.04 ** 0.01 0.96 ± 0.02 ± 0.03 
19 West Madhya Pradesh 0.77 ** 0.1 0.95 ± 0.2 ± 0.27 −0.1 0.09 0.96 ± 0.18 ± 0.23 −0.98 ** 0.15 0.91 ± 0.29 ± 0.39 −0.07 ** 0.01 0.98 ± 0.03 ± 0.04 
20 East Madhya Pradesh 0.63 ** 0.12 0.96 ± 0.24 ± 0.31 −0.19 * 0.09 0.96 ± 0.18 ± 0.23 −0.32 * 0.16 0.91 ± 0.31 ± 0.41 −0.25 ** 0.02 0.96 ± 0.04 ± 0.06 
21 Gujarat region 0.14 0.11 0.95 ± 0.21 ± 0.28 −0.42 ** 0.07 0.96 ± 0.15 ± 0.19 −0.64 ** 0.05 0.98 ± 0.1 ± 0.14 −0.06 ** 0.02 0.96 ± 0.03 ± 0.04 
22 Saurashtra & Kachh 0.01 0.18 0.77 ± 0.36 ± 0.47 0.12 0.08 0.95 ± 0.16 ± 0.21 −0.76 ** 0.06 0.98 ± 0.12 ± 0.16 0.1 ** 0.02 0.91 ± 0.04 ± 0.06 
23 Konkan & Goa 2.18 ** 0.15 0.99 ± 0.3 ± 0.4 −1.81 ** 0.13 0.98 ± 0.26 ± 0.34 −0.42 ** 0.13 0.98 ± 0.26 ± 0.34 −0.18 ** 0.02 0.99 ± 0.05 ± 0.06 
24 Madhya Maharashtra 1.44 ** 0.16 0.94 ± 0.32 ± 0.41 −0.58 ** 0.08 0.98 ± 0.15 ± 0.2 −0.87 ** 0.2 0.92 ± 0.4 ± 0.52 −0.07 ** 0.01 0.99 ± 0.02 ± 0.03 
25 Marathwada 1.33 ** 0.14 0.95 ± 0.27 ± 0.35 0.46 ** 0.07 0.99 ± 0.14 ± 0.19 −1.46 ** 0.15 0.96 ± 0.3 ± 0.39 0.19 ** 0.01 0.99 ± 0.03 ± 0.04 
26 Vidarbha 1.31 ** 0.14 0.95 ± 0.27 ± 0.36 0.12 0.08 0.98 ± 0.15 ± 0.2 −1.48 ** 0.09 0.97 ± 0.17 ± 0.22 −0.05 ** 0.01 0.99 ± 0.02 ± 0.03 
27 Chhattisgarh 0.84 ** 0.19 0.92 ± 0.38 ± 0.5 −0.68 ** 0.12 0.94 ± 0.24 ± 0.31 0.17 * 0.08 0.97 ± 0.16 ± 0.22 −0.27 ** 0.01 0.99 ± 0.03 ± 0.03 
28 Coastal Andhra Pradesh 2.23 ** 0.25 0.97 ± 0.5 ± 0.65 0.06 0.15 0.98 ± 0.29 ± 0.38 −0.17 0.24 0.97 ± 0.47 ± 0.62 −0.02 0.02 0.99 ± 0.04 ± 0.06 
29 Telangana 0.67 ** 0.21 0.93 ± 0.41 ± 0.54 1.01 ** 0.06 0.99 ± 0.11 ± 0.15 −0.6 ** 0.13 0.97 ± 0.25 ± 0.33 0.21 ** 0.01 0.99 ± 0.03 ± 0.04 
30 Rayalaseema 0.05 0.14 0.98 ± 0.27 ± 0.36 1.3 ** 0.16 0.97 ± 0.32 ± 0.42 0.03 0.18 0.97 ± 0.36 ± 0.47 0.29 ** 0.02 0.99 ± 0.05 ± 0.06 
31 Tamil Nadu & Puducherry 0.61 ** 0.19 0.98 ± 0.38 ± 0.5 2.33 ** 0.35 0.95 ± 0.68 ± 0.89 −0.99 ** 0.28 0.98 ± 0.54 ± 0.72 −0.01 0.03 0.99 ± 0.06 ± 0.08 
32 Coastal Karnataka −0.52 ** 0.14 0.98 ± 0.28 ± 0.37 −1.24 ** 0.19 0.97 ± 0.37 ± 0.49 −0.61 0.33 0.92 ± 0.64 ± 0.84 −0.2 ** 0.04 0.97 ± 0.07 ± 0.09 
33 North Interior Karnataka 0.15 0.29 0.88 ± 0.57 ± 0.75 0.74 ** 0.21 0.92 ± 0.42 ± 0.55 −0.82 ** 0.11 0.97 ± 0.21 ± 0.27 0.07 ** 0.01 0.99 ± 0.02 ± 0.03 
34 South Interior Karnataka −0.45 * 0.18 0.96 ± 0.35 ± 0.46 −0.67 ** 0.15 0.96 ± 0.28 ± 0.37 −0.07 0.18 0.95 ± 0.35 ± 0.46 −0.24 ** 0.01 0.99 ± 0.02 ± 0.03 
35 Kerala −0.74 ** 0.23 0.97 ± 0.45 ± 0.59 −2.59 ** 0.16 0.99 ± 0.3 ± 0.4 0.76 ** 0.27 0.97 ± 0.52 ± 0.69 −1.16 ** 0.05 0.97 ± 0.09 ± 0.12 
MSD no.MSD nameQDT1
QDT2
QDT3
120
ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99ITASσsρCL95CL99
Arunachal Pradesh 2.98 ** 0.21 0.95 ± 0.42 ± 0.55 −0.45 0.26 0.95 ± 0.51 ± 0.67 −2.33 ** 0.13 0.97 ± 0.26 ± 0.34 −0.36 ** 0.03 0.97 ± 0.07 ± 0.09 
Assam & Meghalaya 0.27 ** 0.1 0.98 ± 0.2 ± 0.27 0.11 0.16 0.96 ± 0.31 ± 0.41 −1.43 ** 0.17 0.96 ± 0.33 ± 0.44 0.12 ** 0.02 0.99 ± 0.03 ± 0.04 
Nagaland, Manipur, Mizoram & Tripura 1.18 ** 0.1 0.98 ± 0.2 ± 0.26 0.06 0.13 0.97 ± 0.25 ± 0.33 0.01 0.15 0.97 ± 0.3 ± 0.39 0.11 ** 0.02 0.99 ± 0.03 ± 0.05 
Sub-Himalayan West Bengal & Sikkim 0.59 0.3 0.93 ± 0.59 ± 0.77 1.63 ** 0.31 0.93 ± 0.61 ± 0.8 0.69 ** 0.1 0.98 ± 0.2 ± 0.26 0.09 ** 0.03 0.98 ± 0.06 ± 0.07 
Gangetic West Bengal 0.03 0.14 0.97 ± 0.28 ± 0.37 −1.24 ** 0.12 0.98 ± 0.24 ± 0.32 0.3 * 0.13 0.98 ± 0.26 ± 0.34 0.22 ** 0.02 0.99 ± 0.03 ± 0.04 
Odisha 1.18 ** 0.31 0.91 ± 0.62 ± 0.81 −2.4 ** 0.15 0.97 ± 0.28 ± 0.37 1.02 ** 0.23 0.96 ± 0.44 ± 0.58 −0.34 ** 0.03 0.97 ± 0.06 ± 0.08 
Jharkhand 0.95 ** 0.21 0.94 ± 0.42 ± 0.55 −0.57 ** 0.15 0.96 ± 0.29 ± 0.38 0.28 0.2 0.92 ± 0.39 ± 0.52 −0.07 ** 0.01 0.99 ± 0.02 ± 0.03 
Bihar 0.94 ** 0.23 0.89 ± 0.46 ± 0.6 0.9 ** 0.17 0.95 ± 0.34 ± 0.45 −0.18 * 0.09 0.97 ± 0.18 ± 0.24 0.02 0.02 0.98 ± 0.04 ± 0.05 
10 East Uttar Pradesh 0.02 0.18 0.92 ± 0.36 ± 0.47 −0.57 ** 0.19 0.89 ± 0.38 ± 0.5 −0.91 ** 0.11 0.94 ± 0.21 ± 0.28 −0.22 ** 0.01 0.99 ± 0.02 ± 0.03 
11 West Uttar Pradesh 0.41 ** 0.12 0.95 ± 0.23 ± 0.3 −1.24 ** 0.21 0.9 ± 0.4 ± 0.53 −0.59 ** 0.09 0.94 ± 0.18 ± 0.24 −0.27 ** 0.02 0.96 ± 0.04 ± 0.05 
12 Uttarakhand 1.03 ** 0.25 0.86 ± 0.48 ± 0.63 −1.42 ** 0.1 0.99 ± 0.2 ± 0.27 −1.11 ** 0.2 0.89 ± 0.4 ± 0.53 −0.38 ** 0.02 0.98 ± 0.04 ± 0.06 
13 Haryana, Chandigarh & New Delhi 0.02 0.09 0.91 ± 0.18 ± 0.24 −0.74 ** 0.11 0.93 ± 0.21 ± 0.28 −0.59 ** 0.05 0.97 ± 0.1 ± 0.13 −0.15 ** 0.01 0.99 ± 0.01 ± 0.02 
14 Punjab −0.01 0.13 0.83 ± 0.25 ± 0.33 −1.4 ** 0.23 0.9 ± 0.45 ± 0.59 −0.52 ** 0.05 0.96 ± 0.1 ± 0.13 −0.18 ** 0.03 0.86 ± 0.07 ± 0.09 
15 Himachal Pradesh 1.03 ** 0.08 0.98 ± 0.15 ± 0.2 −2.26 ** 0.34 0.87 ± 0.66 ± 0.86 −1.59 ** 0.1 0.98 ± 0.19 ± 0.25 −0.18 ** 0.02 0.97 ± 0.05 ± 0.06 
16 Jammu & Kashmir 0.57 ** 0.08 0.96 ± 0.15 ± 0.2 −0.31 ** 0.07 0.97 ± 0.14 ± 0.19 −2.75 ** 0.23 0.93 ± 0.45 ± 0.59 0.54 ** 0.01 0.99 ± 0.03 ± 0.04 
17 West Rajasthan −0.2 ** 0.04 0.91 ± 0.09 ± 0.11 0.02 0.03 0.92 ± 0.06 ± 0.09 −0.18 ** 0.04 0.96 ± 0.07 ± 0.1 0.02 ** 0.97 ± 0.01 ± 0.01 
18 East Rajasthan 0.21 ** 0.06 0.96 ± 0.12 ± 0.16 −0.1 0.11 0.91 ± 0.21 ± 0.28 −0.72 ** 0.06 0.95 ± 0.13 ± 0.17 −0.04 ** 0.01 0.96 ± 0.02 ± 0.03 
19 West Madhya Pradesh 0.77 ** 0.1 0.95 ± 0.2 ± 0.27 −0.1 0.09 0.96 ± 0.18 ± 0.23 −0.98 ** 0.15 0.91 ± 0.29 ± 0.39 −0.07 ** 0.01 0.98 ± 0.03 ± 0.04 
20 East Madhya Pradesh 0.63 ** 0.12 0.96 ± 0.24 ± 0.31 −0.19 * 0.09 0.96 ± 0.18 ± 0.23 −0.32 * 0.16 0.91 ± 0.31 ± 0.41 −0.25 ** 0.02 0.96 ± 0.04 ± 0.06 
21 Gujarat region 0.14 0.11 0.95 ± 0.21 ± 0.28 −0.42 ** 0.07 0.96 ± 0.15 ± 0.19 −0.64 ** 0.05 0.98 ± 0.1 ± 0.14 −0.06 ** 0.02 0.96 ± 0.03 ± 0.04 
22 Saurashtra & Kachh 0.01 0.18 0.77 ± 0.36 ± 0.47 0.12 0.08 0.95 ± 0.16 ± 0.21 −0.76 ** 0.06 0.98 ± 0.12 ± 0.16 0.1 ** 0.02 0.91 ± 0.04 ± 0.06 
23 Konkan & Goa 2.18 ** 0.15 0.99 ± 0.3 ± 0.4 −1.81 ** 0.13 0.98 ± 0.26 ± 0.34 −0.42 ** 0.13 0.98 ± 0.26 ± 0.34 −0.18 ** 0.02 0.99 ± 0.05 ± 0.06 
24 Madhya Maharashtra 1.44 ** 0.16 0.94 ± 0.32 ± 0.41 −0.58 ** 0.08 0.98 ± 0.15 ± 0.2 −0.87 ** 0.2 0.92 ± 0.4 ± 0.52 −0.07 ** 0.01 0.99 ± 0.02 ± 0.03 
25 Marathwada 1.33 ** 0.14 0.95 ± 0.27 ± 0.35 0.46 ** 0.07 0.99 ± 0.14 ± 0.19 −1.46 ** 0.15 0.96 ± 0.3 ± 0.39 0.19 ** 0.01 0.99 ± 0.03 ± 0.04 
26 Vidarbha 1.31 ** 0.14 0.95 ± 0.27 ± 0.36 0.12 0.08 0.98 ± 0.15 ± 0.2 −1.48 ** 0.09 0.97 ± 0.17 ± 0.22 −0.05 ** 0.01 0.99 ± 0.02 ± 0.03 
27 Chhattisgarh 0.84 ** 0.19 0.92 ± 0.38 ± 0.5 −0.68 ** 0.12 0.94 ± 0.24 ± 0.31 0.17 * 0.08 0.97 ± 0.16 ± 0.22 −0.27 ** 0.01 0.99 ± 0.03 ± 0.03 
28 Coastal Andhra Pradesh 2.23 ** 0.25 0.97 ± 0.5 ± 0.65 0.06 0.15 0.98 ± 0.29 ± 0.38 −0.17 0.24 0.97 ± 0.47 ± 0.62 −0.02 0.02 0.99 ± 0.04 ± 0.06 
29 Telangana 0.67 ** 0.21 0.93 ± 0.41 ± 0.54 1.01 ** 0.06 0.99 ± 0.11 ± 0.15 −0.6 ** 0.13 0.97 ± 0.25 ± 0.33 0.21 ** 0.01 0.99 ± 0.03 ± 0.04 
30 Rayalaseema 0.05 0.14 0.98 ± 0.27 ± 0.36 1.3 ** 0.16 0.97 ± 0.32 ± 0.42 0.03 0.18 0.97 ± 0.36 ± 0.47 0.29 ** 0.02 0.99 ± 0.05 ± 0.06 
31 Tamil Nadu & Puducherry 0.61 ** 0.19 0.98 ± 0.38 ± 0.5 2.33 ** 0.35 0.95 ± 0.68 ± 0.89 −0.99 ** 0.28 0.98 ± 0.54 ± 0.72 −0.01 0.03 0.99 ± 0.06 ± 0.08 
32 Coastal Karnataka −0.52 ** 0.14 0.98 ± 0.28 ± 0.37 −1.24 ** 0.19 0.97 ± 0.37 ± 0.49 −0.61 0.33 0.92 ± 0.64 ± 0.84 −0.2 ** 0.04 0.97 ± 0.07 ± 0.09 
33 North Interior Karnataka 0.15 0.29 0.88 ± 0.57 ± 0.75 0.74 ** 0.21 0.92 ± 0.42 ± 0.55 −0.82 ** 0.11 0.97 ± 0.21 ± 0.27 0.07 ** 0.01 0.99 ± 0.02 ± 0.03 
34 South Interior Karnataka −0.45 * 0.18 0.96 ± 0.35 ± 0.46 −0.67 ** 0.15 0.96 ± 0.28 ± 0.37 −0.07 0.18 0.95 ± 0.35 ± 0.46 −0.24 ** 0.01 0.99 ± 0.02 ± 0.03 
35 Kerala −0.74 ** 0.23 0.97 ± 0.45 ± 0.59 −2.59 ** 0.16 0.99 ± 0.3 ± 0.4 0.76 ** 0.27 0.97 ± 0.52 ± 0.69 −1.16 ** 0.05 0.97 ± 0.09 ± 0.12 

*Trend at 5% significance level (p<0.05); **Trend at 1% significance level (p<0.01); σs, slope of SD (mm); ρ, Correlation; CL95 and CL99, Lower & upper confidence limit at 95 and 99%.

Figure 14

(a) ITA of post-monsoon season (OND) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different meteorological sub-divisions of India. (b) ITA of post-monsoon season (OND) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different meteorological sub-divisions of India

Figure 14

(a) ITA of post-monsoon season (OND) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different meteorological sub-divisions of India. (b) ITA of post-monsoon season (OND) rainfall during QDT1, QDT2, QDT3 and CLM120 in the different meteorological sub-divisions of India

Close modal

Cross-correlation

The Pearson cross-correlation was used for examining the goodness of the correlation between the rainfall data of different locations for a considerable period (Podobnik et al. 2007; Saikranthi et al. 2013). In order to determine the complexity and behaviour of rainfall across different MSDs, the spatial cross-correlation analysis was carried out between rainfall of 34 MSDs of India over the different seasons, which is shown in Figure 15. The critical significant value of cross-correlation coefficients (CCCs) at α=0.01 level and n=120 is 0.24. From the legend, it can be seen that the yellow colour corresponds to weak interaction and the blue colour corresponds to strong interaction. The positive (negative) spatial cross-correlation in rainfall during all the seasons was observed between the MSDs lying closer (far) to each other. The excess rainfall over the MSDs lying in NEI specifically Arunachal Pradesh, Assam & Meghalaya, Nagaland, Manipur, Mizoram, Tripura, and West Bengal leads to deficient rainfall over the remaining MSDs during winter, pre-monsoon, and monsoon seasons, and vice-versa. During the winter rainfall, a positive correlation was at most of the MSDs lying in Indo-Gangetic plains viz: Gangetic West Bengal, Odisha, Jharkhand, Bihar, Uttar Pradesh, Uttarakhand, Haryana, CHD & Delhi, whereas Jammu & Kashmir and Himachal Pradesh, encountered negative correlation with other MSDs. The pre-monsoon rainfall has behaviour similar to the one observed during winter rainfall but with strong CCCs values. During the monsoon season, the MSDs lying in NEI along with Orissa, Jharkhand, and Bihar have observed negative spatial cross-correlations with other MSDs, whereas the post-monsoon rainfall encountered positive CCCs values over most of the MSDs of India. Overall, the spatial cross-correlation between different MSDs was positive over most of the regions except over the NEI and Western Himalayas regions which suggest the occurrence of the enhanced rainfall over the NEI and Western Himalayas often diminishes rainfall in the remaining MSDs. This can be attributed to the modulations offered by orographic lifting because of the presence of complex topographical features in these regions (Winstanley 1973; Parthasarathy et al. 1987; Kulkarni et al. 1992; Munot & Kothawale 2000; Lang & Barros 2004; Dimri & Ganju 2007).
Figure 15

The cross-correlation analysis of rainfall between the different meteorological sub-divisions of India during (a) winter season (JF), (b) pre-monsoon season (MAM), (c) monsoon season (JJAS) and (d) post-monsoon season (OND) at 1% level of significance, where correlation coefficient is increasing from yellow to blue. The numeral from 2 to 35 on both the vertical and horizontal axis of each sub-plot represents the respective meteorological sub-division based on Figure 1.

Figure 15

The cross-correlation analysis of rainfall between the different meteorological sub-divisions of India during (a) winter season (JF), (b) pre-monsoon season (MAM), (c) monsoon season (JJAS) and (d) post-monsoon season (OND) at 1% level of significance, where correlation coefficient is increasing from yellow to blue. The numeral from 2 to 35 on both the vertical and horizontal axis of each sub-plot represents the respective meteorological sub-division based on Figure 1.

Close modal

In the presented study, the dynamics of seasonal rainfall data covering 120 years (1901–2020) for 34 MSDs of India, was analyzed using spatio-temporal patterns of mean rainfall, standard deviation, skewness, kurtosis, maximum seasonal rainfall, percent deviation of rainfall, coefficient of variation, number of rainy days, rainfall intensity, rainfall categorization, trend detection, and cross-correlation coefficient. The highest variability in seasonal rainfall was observed during the winter among different MSDs of India. Among different rainfall categories, the number of normal rainfall events was comparatively higher during the summer monsoon season than in the winter season. A general decline in all seasons was observed during QDT3 except for a few MSDs in northwest India, showing an increase in the number of rainfall events during the pre-monsoon season. In the recent QDT, a rise in the frequency of rainfall events with intensities greater than 40 mm per day was seen over the MSDs lying in northwest and northeast India, but a drop was observed in the MSDs lying in trans-Gangetic plains. ITA depicts that most of the MSDs during winter, monsoon, and post-monsoon season have shown a decreasing trend in rainfall while the MSDs lying in the northwest part of India have shown an escalating trend in rainfall in the pre-monsoon season during the last QDT. The spatial cross-correlation analysis undertaken between the rainfall of different MSDs suggests that the occurrence of the enhanced rainfall over the NEI and Western Himalayas often shrinks the amount of rainfall in the remaining mainland MSDs lying in the central and northwest regions. Our findings assessed the qualitative and quantitative components of seasonal rainfall dynamics in the different MSDs of India. Such analysis, in combination with spatio-temporal maps, could be crucial for planning the efficient use of present water resources, as well as MSDs-level water management, in light of the influence of climate change and variability on India's changing rainfall patterns. The rainfall dynamics mentioned in this research can also be used to optimize agricultural or other socio-economic activities such as diversification of crops based on onset and amount of monsoon rainfall, adaptation against droughts and floods, preventing soil from degradation, adequate utilization of labour and farm resources, migration of farm labour, avoiding crop failure and famines due to drought, etc.

The author(s) would like to thank the India Meteorological Department (IMD), Pune, for providing the daily precipitation time series data for this study.

All relevant data are included in the paper or its Supplementary Information.

The authors declare there is no conflict.

Abaurrea
J.
,
Asín
J.
,
Cebrián
A. C.
&
García-Vera
M. A.
2011
Trend analysis of water quality series based on regression models with correlated errors
.
Journal of Hydrology
400
(
3–4
),
341
352
.
Ahmad
I.
,
Zhang
F.
,
Tayyab
M.
,
Anjum
M. N.
,
Zaman
M.
,
Liu
J.
,
Farid
H. U.
&
Saddique
Q.
2018
Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus River basin
.
Atmos. Res.
213
,
346
360
.
Alemu
Z. A.
&
Dioha
M. O.
2020
Climate change and trend analysis of temperature: the case of Addis Ababa, Ethiopia
.
Environmental Systems Research
9
(
1
),
1
15
.
Al-Taani
A. A.
2014
Trend analysis in water quality of Al-Wehda Dam, north of Jordan
.
Environmental Monitoring and Assessment
186
(
10
),
6223
6239
.
Annamalai
H.
,
Hafner
J.
,
Sooraj
K. P.
&
Piilai
P.
2013
Global warming shifts the monsoon circulation, drying south Asia
.
Journal of Climate
26
(
9
),
2701
2718
.
https://doi.org/10.1175/JCLI-D-12-00208.1
.
Ay
M.
&
Kisi
O.
2015
Investigation of trend analysis of monthly total precipitation by an innovative method
.
Theoretical and Applied Climatology
120
(
3
),
617
629
.
Chandrasekar
A.
2010
Basics of Atmospheric Science
.
PHI Learning Private Limited
,
New Delhi, India
.
Chauhan
A. S.
,
Singh
S.
,
Maurya
R. K. S.
,
Rani
A.
&
Danodia
A.
2022a
Spatio-temporal and trend analysis of rain days having different intensity from 1901–2020 at regional scale in Haryana, India
.
Results in Geophysical Sciences
10
,
100041
.
Chauhan
A. S.
,
Singh
S.
,
Maurya
R. K. S.
,
Rani
A.
&
Danodia
A.
2022c
Spatio-temporal trend analysis and future projections of precipitation at regional scale: a case study of Haryana, India
.
Journal of Water and Climate Change
13
(
5
),
2143
2170
.
Chauhan
A. S.
,
Singh
S.
,
Maurya
R. K. S.
&
Danodia
A.
2022d
Impact of monsoon teleconnections on regional rainfall and vegetation dynamics in Haryana, India
.
Environmental Monitoring and Assessment
194
(
7
),
1
29
.
Dai
A.
,
Zhao
T.
&
Chen
J.
2018
Climate change and drought: a precipitation and evaporation perspective
.
Current Climate Change Reports
4
(
3
),
301
312
.
Das
M. R.
,
Mukhopadhyay
R. K.
,
Dandekar
M. M.
&
Kshirsagar
S. R.
2002
Pre-monsoon western disturbances in relation to monsoon rainfall, its advancement over NW India and their trends
.
Current Science
82
(
11
),
1320
1321
.
Dash
S. K.
,
Kumar
J. R.
&
Shekhar
M. S.
2004
On the decreasing frequency of monsoon depressions over the Indian region
.
Current Science
86
(
10
),
1404
1411
.
Dash
S. K.
,
Jenamani
R. K.
,
Kalsi
S. R.
&
Panda
S. K.
2007
Some evidence of climate change in twentieth-century India
.
Climate Change
85
(
3
),
299
321
.
Davidson
E. A.
2009
The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860
.
Nature Geoscience
2
(
9
),
659
662
.
https://doi.org/10.1038/ngeo608
.
Dhar
O. N.
&
Rakhecha
P. R.
1983
Forecasting northeast monsoon rainfall over Tamil Nadu, India
.
Monthly Weather Review
111
,
109
112
.
Dilling
L.
,
Daly
M. E.
,
Travis
W. R.
,
Wilhelmi
O. V.
&
Klein
R. A.
2015
The dynamics of vulnerability: why adapting to climate variability will not always prepare us for climate change
.
Wiley Interdisciplinary Reviews: Climate Change
6
(
4
),
413
425
.
Dimri
A. P.
&
Dash
S. K.
2012
Winter time climatic trends in the western Himalayas
.
Climate Change
111
(
3
),
775
800
.
Dimri
A. P.
&
Ganju
A.
2007
Winter time seasonal scale simulation over western Himalaya using RegCM3
.
Pure and Applied Geophysics
164
,
1733
1746
.
https://doi.org/10.1007/s00024-007-0239-y
.
Dimri
A. P.
&
Niyogi
D.
2012
Regional climate model application at subgrid scale on Indian winter monsoon over the western Himalayas
.
International Journal of Climatology
23
,
2185
2205
.
Diop
L.
,
Yaseen
Z. M.
,
Bodian
A.
,
Djaman
K.
&
Brown
L.
2018
Trend analysis of streamflow with different time scales: a case study of the upper Senegal River
.
ISH Journal of Hydraulic Engineering
24
(
1
),
105
114
.
Ferreira
F. L. V.
,
Rodrigues
L. N.
&
da Silva
D. D.
2021
Influence of changes in land use and land cover and rainfall on the streamflow regime of a watershed located in the transitioning region of the Brazilian Biomes Atlantic Forest and Cerrado
.
Environmental Monitoring and Assessment
193
,
16
.
https://doi.org/10.1007/s10661-020-08782-5
.
Fukushima
A.
,
Kanamori
H.
&
Matsumoto
J.
2019
Regionality of long-term trends and interannual variation of seasonal precipitation over India
.
Progress in Earth and Planetary Science
6
(
1
),
1
20
.
Gadgil
S.
2003
The Indian monsoon and its variability
.
Annual Review of Earth and Planetary Sciences
31
(
1
),
429
467
.
Ghalami
V.
,
Saghafian
B.
&
Raziei
T.
2021
Trend analysis of evapotranspiration over Iran based on NEX-GDDP high-resolution dataset
.
International Journal of Climatology
41
,
E2073
E2096
.
Goroshi
S.
,
Pradhan
R.
,
Singh
R. P.
,
Singh
K. K.
&
Parihar
J. S.
2017
Trend analysis of evapotranspiration over India: observed from long-term satellite measurements
.
Journal of Earth System Science
126
(
8
),
1
21
.
Goswami
B. N.
,
Venugopal
V.
,
Sengupta
D.
Madhusoodanan, M. S. & Xavier, P. K.
2006
Increasing trend of extreme rain events over India in a warming environment
.
Science
314
(
80
),
1442
1445
.
https://doi.org/10.1126/science.1132027
.
Guhathakurta
P.
&
Rajeevan
M.
2008
Trends in the rainfall pattern over India
.
International Journal of Climatology
28
(
11
),
1453
1469
.
Guhathakurta
P.
,
Sreejith
O. P.
&
Menon
P. A.
2011
Impact of climate change on extreme rainfall events and flood risk in India
.
Journal of Earth System Science
120
(
3
),
359
373
.
Guhathakurta
P.
,
Rajeevan
M.
,
Sikka
D. R.
&
Tyagi
A.
2014
Observed changes in southwest monsoon rainfall over India during 1901–2011
.
International Journal of Climatology
35
(
8
),
1881
1898
.
India Meteorological Department. Ministry of Earth Sciences. Government of India
2022
Met Glossary – IMD Pune. pp. 4. Available from: https://www.imdpune.gov.in/Weather/Reports/glossary.pdf
Jonah
K.
,
Wen
W.
,
Shahid
S.
,
Ali
M. A.
,
Bilal
M.
,
Habtemicheal
B. A.
,
Iyakaremye
V.
,
Qiu
Z.
,
Almazroui
M.
,
Wang
Y.
&
Joseph
S. N.
2021
Spatiotemporal variability of rainfall trends and influencing factors in Rwanda
.
Journal of Atmospheric and Solar-Terrestrial Physics
105631
.
https://doi.org/10.1016/j.jastp.2021.105631
.
Joshi
S.
,
Gouda
K. C.
&
Goswami
P.
2020
Seasonal rainfall forecast skill over Central Himalaya with an atmospheric general circulation model
.
Theoretical and Applied Climatology
139
,
237
250
.
https://doi.org/10.1007/s00704-019-02971-0
.
Khan
U.
2011
Emerging Trends of Urbanization in India: an Evaluation From Environmental Perspectives
.
Dissertation
,
Aligarh Muslim University
Aligarh, Uttar Pradesh, India
.
Kothawale
D. R.
&
Munot
A. A.
1998
Probabilities of excess and deficient southwest monsoon rainfall over different meteorological sub-divisions of India
.
Proc. Indian Acad. Sci. (Earth Planet Sci.)
107
,
107
119
.
https://doi.org/10.1007/BF02840461
.
Kripalani
R. H.
&
Kulkarni
A.
2001
Monsoon rainfall variations and tele-connections over South and East Asia
.
International Journal of Climatology
21
,
603
616
.
Krishna Moorthy
K.
,
Suresh Babu
S.
,
Manoj
M. R.
& Satheesh
K. S.
2013
Buildup of aerosols over the Indian Region
.
Geophysical Research Letters
40
(
5
),
1011
1014
.
Krishnakumar
K. N.
,
Rao
G. P.
&
Gopakumar
C. S.
2009
Rainfall trends in twentieth century over Kerala, India
.
Atmospheric Environment
43
,
1940
1944
.
https://doi.org/10.1016/j.atmosenv.2008.12.053
.
Krishnan
R.
,
Sanjay
J.
,
Gnanaseelan
C.
,
Mujumdar
M.
,
Kulkarni
A.
&
Chakraborty
S.
2020
Assessment of Climate Change Over the Indian Region: A Report of the Ministry of Earth Sciences (MOES), Government of India
.
Springer Nature
,
Berlin/Heidelberg, Germany.
Kulkarni
A.
2012
Weakening of Indian summer monsoon rainfall in warming environment
.
Theoretical and Applied Climatology
109
(
3–4
),
447
459
.
https://doi.org/10.1007/s00704-012-0591-4
.
Kulkarni
A.
,
Kripalani
R. H.
&
Singh
S. V.
1992
Classification of summer monsoon rainfall patterns over India
.
International Journal of Climatology
12
,
269
280
.
Kulkarni
A.
,
Deshpande
N.
,
Kothawale
D. R.
,
Sabade
S. S.
,
RamaRao
M. V.
,
Sabin
T. P.
,
Patwardhan
S.
,
Mujumdar
M.
&
Krishnan
R.
2017
Observed Climate Variability and Change Over India. Climate Change Over India – An Interim Report
.
Centre for Climate Change Research, IITM
,
Pune, India
.
Kulkarni
A.
,
Sabin
T. P.
,
Chowdary
J. S.
,
Rao
K. K.
,
Priya
P.
,
Gandhi
N.
,
Bhaskar
P.
,
Buri
V. K.
,
Sabade
S. S.
,
Pai
D. S.
&
Ashok
K.
2020
Precipitation changes in India
. In:
Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A. & Chakraborty, S. (eds).
Assessment of Climate Change Over the Indian Region
.
Springer
,
Singapore
, pp.
47
72
.
Kumar
K. R.
,
Pant
G. B.
,
Parthasarathy
B.
&
Sontakke
N. A.
1992
Spatial and sub seasonal patterns of the longterm trends of Indian summer monsoon rainfall
.
International Journal of Climatology
12
(
3
),
257
268
.
Kumar
V.
,
Jain
S. K.
&
Singh
Y.
2010
Analysis of long-term rainfall trends in India
.
Hydrological Sciences Journal
55
(
4
),
484
496
.
https://doi.org/10.1080/02626667.2010.481373
.
Lal
M.
2003
Global climate change: India's monsoon and its variability
.
Journal of Environmental Studies and Policy
6
,
1
34
.
Lang
T. J.
&
Barros
A. P.
2004
Winter storms in the central Himalayas
.
Journal of the Meteorological Society of Japan
82
,
829
844
.
https://doi.org/10.2151/jmsj.2004.829
.
Mahajan
D. R.
&
Dodamani
B. M.
2015
Trend analysis of drought events over upper Krishna basin in Maharashtra
.
Aquatic Procedia
4
,
1250
1257
.
Malik
A.
&
Kumar
A.
2020
Spatio-temporal trend analysis of rainfall using parametric and nonparametric tests: case study in Uttarakhand, India
.
Theoretical and Applied Climatology
140
,
183
207
.
https://doi.org/10.1007/s00704-019-03080-8
.
Malik
A.
,
Kumar
A.
,
Guhathakurta
P.
&
Kisi
O.
2019
Spatial-temporal trends analysis of seasonal and annual rainfall (1966–2015) using innovative trend analysis method with significance test
.
Arabian Journal of Geosciences
12
(
10
).
https://doi.org/10.1007/s12517-019-4454-5
.
Malik
A.
,
Kumar
A.
,
Ahmed
A. N.
,
Fai
C. M.
,
Afan
H. A.
,
Sefelnasr
A.
,
Sherif
M.
&
El-Shafie
A.
2020a
Application of non-parametric approaches to identify trend in streamflow during 1976–2007 (Naula watershed)
.
Alexandria Engineering Journal
59
(
3
),
1595
1606
.
https://doi.org/10.1016/j.aej.2020.04.006
.
Malik
A.
,
Kumar
A.
,
Pham
Q. B.
,
Zhu
S.
,
Linh
N. T. T.
&
Tri
D. Q.
2020b
Identification of EDI trend using Mann-Kendall and Şen-Innovative trend methods (Uttarakhand, India)
.
Arabian Journal of Geosciences
.
https://doi.org/10.1007/s12517-020-05926
-2
.
Mall
R. K.
,
Attri
S. D.
&
Kumar
S.
2011
Extreme weather events and climate change policy in India
.
Journal of South Asia Disaster Studies
4
(
2
),
37
56
.
Marumbwa
F. M.
,
Cho
M. A.
&
Chirwa
P. W.
2019
Analysis of spatio-temporal rainfall trends across southern African biomes between 1981 and 2016
.
Physics and Chemistry of the Earth
114
,
102808
.
https://doi.org/10.1016/j.pce.2019.10.004
.
Maurya
R. K. S.
&
Singh
G. P.
2016
Simulation of present-day precipitation over India using a regional climate model
.
Meteorology and Atmospheric Physics
128
(
2
),
211
228
.
Meshram
S. G.
,
Singh
V. P.
&
Meshram
C.
2017
Long-term trend and variability of precipitation in Chhattisgarh State, India
.
Theoretical and Applied Climatology
129
,
729
744
.
https://doi.org/10.1007/s00704-016-1804-z
.
Min
S. K.
,
Kwon
W. T.
,
Park
E. H.
&
Choi
Y.
2003
Spatial and temporal comparisons of droughts over Korea with East Asia
.
International Journal of Climatology
23
,
223
233
.
Mondal
A.
,
Khare
D.
&
Kundu
S.
2015
Spatial and temporal analysis of rainfall and temperature trend of India
.
Theoretical and Applied Climatology
122
(
1
),
143
158
.
Munot
A. A.
&
Kothawale
D. R.
2000
Intra-seasonal, inter-annual and decadal scale variability in summer monsoon rainfall over India
.
International Journal of Climatology
20
,
1387
1400
.
Nageswararao
M. N.
,
Sannan
M. C.
&
Mohanty
U. C.
2019
Characteristics of various rainfall events over South Peninsular India during northeast monsoon using high-resolution gridded dataset (1901–2016)
.
Theoretical and Applied Climatology
137
,
2573
2973
.
https://doi.org/10.1007/s00704-018-02755-y
.
Nomura
C.
2019
Historical roots of industrialisation and the emerging state in Colonial India
. In:
Paths to the Emerging State in Asia and Africa, Emerging-Economy State and International Policy Studies
.
Springer
,
Singapore
, pp.
169
-
193
.
https://doi.org/10.1007/978-981-13-3131-2_8.
Pant
G. B.
&
Rupa Kumar
K.
1997
Climates of South Asia
.
John Wiley & Sons
,
Chichester
,
UK
, p.
320
.
Pant
G. B.
,
Rupa Kumar
K.
&
Borgaonkar
H. P.
1999
Climate and its long-term variability over the western Himalaya during the past two centuries
.
In: Dash, S. K. & Bahadur, J. (eds).
The Himalayan Environment
.
New Age International (P) Ltd., Publishers, New Delhi, India
, pp.
171
184
.
Parthasarathy
B.
,
Sontakke
N. A.
,
Munot
A. A.
&
Kothawale
D. R.
1987
Droughts/floods in the summer monsoon season over different meteorological subdivisions of India for the period 1871–1984
.
Journal of Climatology
7
,
57
70
.
Pathak
A. A.
&
Dodamani
B. M.
2020
Trend analysis of rainfall, rainy days and drought: a case study of Ghataprabha River Basin, India
.
Modeling Earth Systems and Environment
6
(
3
),
1357
1372
.
Patra
J. P.
,
Mishra
A.
,
Singh
R.
&
Raghuwanshi
N. S.
2012
Detecting rainfall trends in twentieth century (1871–2006) over Orissa State, India
.
Climatic Change
111
,
801
817
.
https://doi.org/10.1007/s10584-011-0215-5
.
Paul
S.
,
Ghosh
S.
,
Oglesby
R.
,
Pathak
A.
,
Chandrasekharan
A.
&
Ramsankaran
R. A. A. J.
2016
Weakening of Indian summer monsoon rainfall due to changes in land use land cover
.
Scientific Reports
6
(
1
),
1
10
.
Pisharoty
P.
&
Desai
B. N.
1956
Western disturbances and Indian weather, Indian
.
J. Meteorol. Geophys.
7
,
333
338
.
Podobnik
B.
,
Fu
D. F.
,
Stanley
H. E.
&
Ivanov
P. C.
2007
Power-law autocorrelated stochastic processes with long-range cross-correlations
.
European Physical Journal B: Condensed Matter and Complex Systems
56
(
1
),
47
52
.
Pour
S. H.
,
Wahab
A. K. A.
,
Shahid
S.
&
Ismail
Z. B.
2020
Changes in reference evapotranspiration and its driving factors in peninsular Malaysia
.
Atmospheric Research
246
,
105096
.
Praveen
B.
,
Talukdar
S.
,
Mahato, S., Mondal, J., Sharma, P., Islam, A. R. M. & Rahman, A.
2020
Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches
.
Scientific Reports
10
,
10342
.
https://doi.org/10.1038/s41598-020-67228-7
.
Rajeevan
M.
,
De
U. S.
&
Prasad
R. K.
2000
Decadal variation of sea surface temperatures, cloudiness and monsoon depressions in the north Indian ocean
.
Current Science
79
(
3
),
283
285
.
Rajeevan
M.
,
Bhate
J.
&
Jaswal
A. K.
2008
Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data
.
Geophysical Research Letters
35
,
1
6
.
https://doi.org/10.1029/2008GL035143
.
Sa'adi
Z.
,
Shahid
S.
,
Ismail
T.
,
Chung
E. S.
&
Wang
X. J.
2019
Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test
.
Meteorology and Atmospheric Physics
131
,
263
277
.
https://doi.org/10.1007/s00703-017-0564-3
.
Sadhukhan
I.
,
Lohar
D.
&
Pal
D. K.
2000
Pre-monsoon season rainfall variability over Gangetic West Bengal and its neighborhood; India
.
International Journal of Climatology
20
,
1485
1493
.
Sahany
S.
,
Mishra
S. K.
,
Pathak
R.
&
Rajagopalan
B.
2018
Spatiotemporal variability of seasonality of rainfall over India
.
Geophysical Research Letters
45
(
14
),
7140
7147
.
Sahoo
S. K.
,
Ajilesh
P. P.
,
Gouda
K. C.
&
Himesh
S.
2020
Impact of land-use changes on the genesis and evolution of extreme rainfall event: a case study over Uttarakhand, India
.
Theoretical and Applied Climatology
140
,
915
926
.
https://doi.org/10.1007/s00704-020-03129-z
.
Saikranthi
K.
,
Rao
T. N.
,
Rajeevan
M.
&
Bhaskara Rao
S. V.
2013
Identification and validation of homogeneous rainfall zones in India using correlation analysis
.
Journal of Hydrometeorology
14
(
1
),
304
317
.
https://doi.org/10.1175/JHM-D-12-071.1
.
Sangma
M. L. K.
,
Reang
H.
,
Patle
G. T.
&
Dabral
P. P.
2020
Variability and trend analysis of rainfall data of shillong and agartala stations of North East India
.
International Journal of Environment and Climate Change
10
(
11
),
134
142
.
Sathiyamoorthy
V.
,
Shukla
B. P.
&
Pal
P. K.
2010
Increase in the pre-monsoon rainfall over the Indian summer monsoon region
.
Atmospheric Science Letters
11
(
4
),
313
318
.
Şen
Z.
2012
Innovative trend analysis methodology
.
Journal of Hydrologic Engineering
17
,
1042
1046
.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000556
.
Şen
Z.
2017
Innovative trend significance test and applications
.
Theoretical and Applied Climatology
127
,
939
947
.
https://doi.org/10.1007/s00704-015-1681-x
.
Shekhar
M. S.
,
Chand
H.
,
Kumar
S.
,
Srinivasan
K.
&
Ganju
A.
2010
Climate-change studies in the western Himalaya
.
Annals of Glaciology
51
(
54
),
105
112
.
Shepard
D.
1968
A two-dimensional interpolation function for irregularly-spaced data
. In:
Proceedings of the 1968 23rd ACM National Conference
(pp.
517
524
).
Shiru
M. S.
,
Shahid
S.
,
Alias
N.
&
Chung
E. S.
2018
Trend analysis of droughts during crop growing seasons of Nigeria
.
Sustainability
10
(
3
),
871
.
Shrestha
A. B.
,
Wake
C. P.
,
Dibb
J. E.
&
Mayewski
P. A.
2000
Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters
.
International Journal of Climatology
20
,
317
327
.
Singh
O. P.
,
Khan
T. M. A.
&
Rahman
M. S.
2001
Has the frequency of intense tropical cyclones increased in the north Indian Ocean?
Current Science
80
(
4
),
575
580
.
Singh
R.
,
Sah
S.
,
Das
B.
,
Potekar, S., Chaudhary, A. & Pathak, H.
2021
Spatio-temporal trends and variability of rainfall in Maharashtra, India: analysis of 118 years
.
Theoretical and Applied Climatology
.
https://doi.org/10.1007/s00704-020-03452-5
.
Singh
R. N.
,
Sah
S.
,
Das
B.
,
Potekar
S.
,
Chaudhary
A.
&
Pathak
H.
2021
Innovative trend analysis of spatio-temporal variations of rainfall in India during 1901–2019
.
Theoretical and Applied Climatology
145
(
1
),
821
838
.
Sinha
A.
,
Kathayat
G.
,
Cheng
H.
,
Breitenbach
S. F.
,
Berkelhammer
M.
,
Mudelsee
M.
,
Biswas
J.
&
Edwards
R. L.
2015
Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia
.
Nature Communications
6
(
1
),
1
8
.
Sinha
P.
,
Nageswararao
M. M.
,
Dash
G. P.
,
Nair
A.
&
Mohanty
U. C.
2019
Pre-monsoon rainfall and surface air temperature trends over India and its global linkages
.
Meteorology and Atmospheric Physics
131
(
4
),
1005
1018
.
Sivaprasad
P.
&
Babu
C. A.
2014
Seasonal variation and classification of aerosols over an inland station in India
.
Meteorological Applications
21
(
2
),
241
248
.
Teixeira
D.
,
Veloso
M. F.
,
Ferreira
F. L. V.
,
Gleriani, J. M. & do Amaral, C. H.
2021
Spectro-temporal analysis of the Paraopeba River water after the tailings dam burst of the Córrego do Feijão mine, in Brumadinho, Brazil
.
Environmental Monitoring and Assessment
193
,
435
.
https://doi.org/10.1007/s10661-021-09218-4
.
Thornton
P. K.
,
Ericksen
P. J.
,
Herrero
M.
&
Challinor
A. J.
2014
Climate variability and vulnerability to climate change: a review
.
Global Change Biology
20
(
11
),
3313
3328
.
Tilman
D.
1998
The greening of the green revolution
.
Nature
396
(
6708
),
211
212
.
https://doi.org/10.1038/24254
.
Trenberth
K. E.
2011
Changes in precipitation with climate change
.
Climate Resilience
47
(
1–2
),
123
138
.
https://doi.org/10.3354/cr00953
.
Vittal
H.
,
Karmakar
S.
&
Ghosh
S.
2013
Diametric changes in trends and patterns of extreme rainfall over India from pre-1950 to post-1950
.
Geophysical Research Letters
40
,
3253
3258
.
https://doi.org/10.1002/grl.50631
.
Wang
Y.
,
Xu
Y.
,
Tabari
H.
,
Wang
J.
,
Wang
Q.
,
Song
S.
&
Hu
Z.
2020
Innovative trend analysis of annual and seasonal rainfall in the Yangtze River Delta, eastern China
.
Atmospheric Research
231
,
104673
.
https://doi.org/10.1016/j.atmosres.2019.104673
.
Xie
S. P.
,
Xu
H.
,
Saji
N. H.
,
Wang
Y.
&
Liu
W. T.
2006
Role of narrow mountains in large-scale organization of Asian monsoon convection
.
Journal of Climate
19
(
14
),
3420
3429
.
Yadav
R. K.
,
Kumar
K. R.
&
Rajeevan
M.
2012
Characteristic features of winter precipitation and its variability over northwest India
.
Journal of Earth System Science
121
(
3
),
611
623
.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Supplementary data