Abstract

The high level of acceptance of ultraviolet (UV) irradiation for water disinfection in the past decade is due to the development of quality standards, especially for drinking water disinfection in Europe (Austrian Standards Institute, German Standards Institute). The central parts of a UV-disinfection device are the UV lamps. Despite their importance, their characterisation and quality assurance is far from being a matter of course and had not been regulated so far. This holds especially with regard to their temperature behaviour. The UV radiation (UVR) emittance of Mercury-Low-Pressure- and Amalgam-Low-Pressure-lamps (LP-lamps) depends on temperature. Each lamp type has its own optimal temperature where UVR emittance is highest. At lower or higher temperatures, UVR emittance is reduced. Additionally LP-lamps do not emit homogeneous along their length and this emission profile can change with temperature. In this paper, we present a standardized method to measure the UVR emittance of LP-lamps along the length in water in dependence of water temperature. This method has been included in the updated Austrian standard ÖNORM M 5873-1 (2020) and in the new release DIN 19294-1 (2020). With this method, the UVR emittance of LP-lamps can be characterized and different types of lamps can be compared.

HIGHLIGHTS

  • The temperature behavior of UV low pressure lamps has been so far an underestimated factor in UV disinfection of water.

  • For the first time a standard test procedure is presented providing objective, independent and reproducible assessment.

  • The overall method takes into account the critical properties of the measuring method. With these, measurements become independent from different setups

This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplementary data