Filters are important pieces of equipment to ensure the normal operation of micro-irrigation systems, and the head loss is a key indicator to evaluate their hydraulic performances. To reduce the head loss and energy consumption, a new type of filter for treating surface water – the pre-pump micro-pressure filter was proposed. The pre-pump micro-pressure filter was studied, and physical model tests on the flow rate, water separator type, and filter screen area were conducted under clean water conditions. Statistical and dimensional analysis methods were used to analyze the test results. Our results showed that the order of the factors affecting the head loss of the filter was flow rate > water separator type > filter screen area. The various water separator types showed no significant differences in terms of head loss, while the different flow rates showed significant differences. A head loss prediction model was constructed, and the coefficient of determination R2 reached 0.987. Our results can provide technical support for new filter development and enrich the theory of micro-pressure filtration.

  • The predicted head loss of pre-pump micro-pressure filter has a high regression coefficient. The average relative error of the predicted value is 6.07%, which shows that the calculation equation is an ideal head loss prediction model.

  • The order of the factors affecting the head loss of the filter is as follows: flow rate < water separator type > filter screen area.

This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).