The dispersion or spread of a dissolved or suspended substance in an estuarine system occurs mainly due to the non-uniformity of velocity distribution, including turbulent fluctuations, shear stress at the boundary and surface stress caused by winds. The mixing and dispersion phenomena in rivers and estuaries are extremely important in water quality management and control. The development of a dispersion model in harmony with the nature of the flow field in a river or estuary is necessary in the estimation and correlation of dispersion parameters, called dispersion coefficients, which may, in general, be anisotropic in a multidimensional transport process. The earlier one-dimensional models have gradually given way to higher dimensional models for better description of the phenomena as well as for more accurate estimation of parameters. Field studies of dispersion of tracers have been the most important method of generating data for parameter estimation. A number of correlations for mixing and dispersion coefficients in terms of flow rates and other fundamental system parameters are available. The present study incorporates the analysis, assessment and applications of various dispersion and mixing models available. Also, a critical appraisal of the validity, inherent degree of uncertainty and the range of applications of different correlations has been incorporated.

This content is only available as a PDF.
You do not currently have access to this content.