In this study, we provide the first documented removal of humic acid (HA) from aqueous solution using polyacrylamide/chitosan (PAAm/CS) semi-IPN hydrogel. The prepared semi-IPN hydrogel was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The factors effecting HA adsorption performance were individually tested, including initial pH, ionic strength, contact time, initial HA concentration, and temperature. The results indicated that semi-IPN hydrogel was successfully fabricated and can be applied in a wide pH range, from 3 to 9. Low ionic strength effectively enhanced the adsorption capacity. As the ionic strength increased, this enhancement was less obvious but still positive. The adsorption kinetics were fitted to a pseudo-first-order kinetic model, and the adsorption isotherm was described using the Sips isotherm model. The HA adsorption capacity increased with increasing temperature. The maximum adsorption capacity has the potential to attain 166.30 mg g−1, based on the Sips isotherm at 25 °C. Experiments demonstrated that the HA adsorption process can be primarily attributed to electrostatic interactions, and hydrogen bonding was also involved. Facile synthesis and good adsorptive performance indicate that semi-IPN hydrogel can be used for removing HA from water.

You do not currently have access to this content.