The operational characteristics, efficiency of treatment of landfill leachate, and recovery of energy in a laboratory scale hybrid bioreactor were investigated. The reactor was a continuous upflow system combining a sludge bed and a filter and was operated at 35°C. This modified anaerobic sludge bed filter (SBF) reactor was found to provide efficient treatment of the organic constituents of the leachate. Removal of soluble COD was greater than 92% at organic loading rates less than 13 kg COD/m3/d, and removal decreased to 70% with an organic loading rate of 21.77 kg COD/m3/d. A solids balance indicated that 0.041 g volatile suspended solids (VSS) were produced per gram of COD removed. The removal of sulfate and soluble Fe was as high as 90% and 96.9%, respectively. An accumulation of Fe was observed. When the influent concentration of total Fe ranged from 160 to 515 mg/l, the total Fe concentration in the sludge was as high as 7,100 mg/l after a 185 day period of operation. The sulfate loading of the system affected energy recovery. When the sulfate loading rate increased from 102 to 683 mg/l/d, energy recovery decreased from 90% to 52%. The biogas conversion factor for methane was 0.31 1 at STP per gram of COD removed.
Skip Nav Destination
Article navigation
Research Article|
April 01 1989
Treatment of Landfill Leachate with an Upflow Anaerobic Reactor Combining a Sludge Bed and a Filter
Water Sci Technol (1989) 21 (4-5): 133–143.
Citation
Juu-En Chang; Treatment of Landfill Leachate with an Upflow Anaerobic Reactor Combining a Sludge Bed and a Filter. Water Sci Technol 1 April 1989; 21 (4-5): 133–143. doi: https://doi.org/10.2166/wst.1989.0217
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Impact Factor 2.430
CiteScore 3.4 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021