Waste load allocation for rivers has been a topic of growing interest. Dynamic programming based algorithms are particularly attractive in this context and are widely reported in the literature. Codes developed for dynamic programming are however complex, require substantial computer resources and importantly do not allow interactions of the user. Further, there is always resistance to utilizing mathematical programming based algorithms for practical applications. There has been therefore always a gap between theory and practice in systems analysis in water quality management. This paper presents various heuristic algorithms to bridge this gap with supporting comparisons with dynamic programming based algorithms. These heuristics make a good use of the insight gained in the system's behaviour through experience, a process akin to the one adopted by field personnel and therefore can readily be understood by a user familiar with the system. Also they allow user preferences in decision making via on-line interaction. Experience has shown that these heuristics are indeed well founded and compare very favourably with the sophisticated dynamic programming algorithms. Two examples have been included which demonstrate such a success of the heuristic algorithms.

This content is only available as a PDF.
You do not currently have access to this content.