Gold and platinum were compared to ascertain how they expressed a stabilized potential in activated sludge. The comparison was based on electrochemical determination of the electron transfer rate (i.e. equilibrium exchange current density) and recording of potentials against time.

When both metals are treated in the same way, platinum gives equilibrium exchange current densities approx. 10 times higher than gold, both in aerated activated sludge and in treated water. For platinum, the equilibrium exchange current densities range from 0.1 to 0.25 µA/cm2 immediately after polishing and decrease during prolonged contact with activated sludge subjected to alternating aeration/anoxia sequences.

The lower kinetics of electron transfer on gold go together with significant differences in response:

  • - In an aerobic medium a gold electrode potential is lower than that of a platinum electrode. In a strongly anaerobic medium, the reverse is true. Consequently, the amplitude of the potential variation between aerobic and anaerobic media is smaller for gold than for platinum. Under our experimental conditions this amplitude was approx 350 mV for gold and 850 mV for platinum.

  • - The slopes of the linear relationships between potential and pH or potential and the logarithm of the dissolved oxygen concentration are two or three times greater for platinum than for gold.

Although the values obtained with platinum electrodes cannot represent a veritable equilibrium state, the platinum electrode zero-current potential would seem to be far more sensitive to variations in the medium than that of the gold electrode; it is, therefore, more suitable for use in activated sludge.

You do not currently have access to this content.