A two-year study has focused on AOX removal from bleaching wastewaters in anaerobic and aerobic biological treatment, using bench scale bioreactors operated in parallel and in series. Significantly higher removals have been found in anaerobic than in aerobic treatment. Earlier work with dilute kraft bleaching wastes has been extended in additional laboratory tests and at a nearby kraft mill. 50-75% fractions of bleaching wastes were treated. Toxicity in the anaerobic process was encountered at 85% bleach waste fractions.

Total AOX removal experienced in aerobic treatment is 30-35%, in anaerobic treatment 40-45%, and in an anaerobic/aerobic sequence 50-55%. Percentage removals were not sensitive to the fraction of bleaching wastewater. Several process modifications were attempted to try to obtain higher removals with only marginal success. Studies at a kraft mill confirmed the AOX removals that had been found in lab studies.

AOX removal occurs by several mechanisms. There is a very significant chemical or abiotic degradation that occurs after neutralization, perhaps enhanced by reductants or other inorganic salts. Biological processes are much more significant in anaerobic than in aerobic treatment. Anaerobic reductive dehalogenation affects specific chlorinated compounds and catalyzed AOX degradation is facilitated by reduced coenzymes that are produced by bacteria. Removal by sorption or insolubilization is relatively minor in aerobic and anaerobic processes.

This content is only available as a PDF.
You do not currently have access to this content.