Sampling frequency is one of the most crucial factors in the design of groundwater quality monitoring systems. Monitoring systems in general have two major objectives: (1) to describe natural processes and long-term changes and (2) to serve as alarm-systems and detect single pollution events. A comparison between two data sequences of different sampling frequency - weekly and monthly - is made through an example of the groundwater quality monitoring system in the karstic region of the Transdanubian Mountains in Hungary. Hydrogeochemical time series were first decomposed into their components: trend, periodicity, autocorrelation, and rough in succession. In order to identify outliers within the rough, Exploratory Data Analysis (EDA) was applied. Optimal sampling frequency was determined based on the analysis of the above components. Results have shown that: (1) seasons shorter than two months do exist in the studied time series which cannot be captured by monthly sampling; (2) for monitoring seasonal processes samples should be collected at the Nyquist frequency (at least two samples per period); for pollution detection autocorrelation lag-time (or semi-variogram range in time) should determine the sampling distance; in the lack of autocorrelation property the analysis of outliers should guide the sampling design; (3) cross-correlation analysis between precipitation and the observed parameters indicative of pollutant travel time yields valuable additional information on the pollution sensitivity of the hydrogeological system.
Skip Nav Destination
Article navigation
Research Article|
November 01 1994
Analysis of sampling frequency in groundwater quality monitoring systems: a case study Available to Purchase
Water Sci Technol (1994) 30 (10): 73–78.
Citation
Andrea Szucs, Gyözö Jordan; Analysis of sampling frequency in groundwater quality monitoring systems: a case study. Water Sci Technol 1 November 1994; 30 (10): 73–78. doi: https://doi.org/10.2166/wst.1994.0513
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00