A mathematical model is proposed to predict the removal of dissolved organic substances and the consumption of dissolved oxygen by attached biofilms in an open-channel flow. The model combines the biofilm equations with the conventional Streeter–Phelps type equations of river water quality by considering the mass transfer of organics and oxygen in the river water through the diffusion layer into the biofilm. It is assumed that the diffusion and reaction within the biofilm are of steady-state, and follow Monod kinetics. The model is solved numerically with a trial-and-error method. The simulation results of the model for an ideal case of river flow and biofilm show that the organic removal rate and oxygen consumption rate caused by the biofilm are greater than that by suspended biomass. The effects of diffusion layer thickness, flow velocity, and biofilm thickness on the change of river water quality are discussed.
Skip Nav Destination
Article navigation
Research Article|
July 01 1994
MODELING THE ORGANIC REMOVAL AND OXYGEN CONSUMPTION BY BIOFILMS IN AN OPEN-CHANNEL FLOW
Water Sci Technol (1994) 30 (2): 53–61.
Citation
Shiyu Li, Guang Hao Chen; MODELING THE ORGANIC REMOVAL AND OXYGEN CONSUMPTION BY BIOFILMS IN AN OPEN-CHANNEL FLOW. Water Sci Technol 1 July 1994; 30 (2): 53–61. doi: https://doi.org/10.2166/wst.1994.0028
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Impact Factor 2.430
CiteScore 3.4 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021
34
Views
16
Citations