The primary mechanisms responsible for the removal and retention of iron, manganese, and sulfate in constructed wetlands receiving acidic mine drainage (AMD) include the formation of metal oxides and sulfides within the sediments. This study was initiated to determine the kinetics of metal ion liberation, under reducing conditions, from synthetic and naturally occurring iron and manganese oxides typically found in AMD precipitates. Rates of metal ion liberation were determined during time series incubations of an organic substrate (spent mushroom compost) to which five metal oxides of varying crystallinity (amorphous and crystalline oxides of iron and manganese; natural AMD oxide) were added. All experiments were carried out in silicone-sealed polycarbonate centrifuge tubes incubated at 22°C for a period of 3, 7, 10, 14, 21 or 28 days. Tubes were sacrificed after each incubation period and were analyzed for redox potential, pH, sulfide, and metals. All tubes exhibited reducing potentials within 3 days coupled with rapidly increasing concentrations of iron and manganese. Liberation of iron and manganese decreased with increasing mineral crystallinity (amorphous > natural AMD ≫ crystalline). The results suggest that metal ion liberation from oxide minerals may be an important source of iron and manganese within constructed wetlands receiving AMD.

You do not currently have access to this content.