A general increase in nutrient discharges during the last few decades has caused various changes in the algal community structure along the European continental coast. Coincidentally and maybe consequently, the foodweb structure and functioning has altered in local areas causing various phenomena like oxygen depletion, mortality of groups of organisms, foam on beaches, and an increase in the productivity of benthic communities and some commercial fish species. The observed increases in algal biomass and shifts in species composition are discussed in relation to the involved key mechanisms: resource competition and selective grazing.

Along the Dutch coastal zone of the North Sea eutrophication has caused a doubling of the yearly averaged algal biomass during the past three decades. The sudden appearance of Phaeocystis summer blooms coincided with a shift from P-limitation towards N-limitation in the Dutch coastal area due to a stronger increase in P-discharge relative to the increase in N-discharge. Competition experiments in continuous cultures showed Phaeocystis to become dominant under N-limitation. Additionally, the large Phaeocystis colonies, which can reach a diameter up to one centimetre, escape from microzooplankton grazing.

A computer model is presented which demonstrates a shift from bottom-up towards top-down control if the pelagic environment becomes eutrophicated. Implementation of this concept in a size-differential phytoplankton control model generates the prediction that algal blooms are dominated by species that escape from grazing by those zooplankton species which have a high potential numerical response. In marine environments these are microzooplankton species. These organisms mainly feed on cyanobacteria, prochlorophytes and some nano-algal species. One of the consequences for foodweb structure and the carbon fluxes in marine foodwebs is that eutrophication will lead to the dominance of poorly edible algal species.

Eutrophication favours the downward transport of carbon and nutrients towards the sediments not only due to higher algal biomasses but also as a consequence of a shift towards larger algal species with higher sedimentation characteristics.

An example is given how these new insights can be used for water quality management purposes.

You do not currently have access to this content.