The characteristics of a novel bioreactor system developed for the simultaneous treatment of toxic hexavalent chromium (chromate) and high-strength organic pollution by introducing a chromate-resistant and chromate-reducing bacterium Enterobacter cloacae strain HO-1 (HO-1, hereafter) were studied to optimize its operating condition. Based upon the growth and chromate-reducing kinetics of HO-1, a mathematical model to simulate the change of chromate removal rate per unit volume of bioreactor and that per unit cell mass under the fed-batch operation was proposed. The effects of repeated cultivation of HO-1 with ORP-controlled aeration and the cumulative chromate reduction per unit cell mass on the microbial activity were investigated to represent the kinetic expression of chromate reduction. By using the mathematical model developed through the present research, the relationship between the operating conditions and the chromate reduction rate in the bioreactor was simulated and the model was verified by comparing it with the observed data. Thus the optimal operating conditions to give the higher reduction rate and the longer operating interval with and without aerated cultivation of HO-1 are extensively discussed. This bioreactor can be used for the treatment of chromate wastewater provided that some high concentration organic wastes are available. The rate of chromate reduction in the bioreactor is as high as 10 - 15 g-Cr6+/m3h. Chromium hydroxide, products of biological chromate reduction, can be recycled as a green pigment.
Skip Nav Destination
Article navigation
Research Article|
September 01 1996
Optimal operation of bioreactor system developed for the treatment of chromate wastewater using enterobacter cloacae HO-1
Koichi Fujie;
Koichi Fujie
*Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441, Japan
Search for other works by this author on:
Hong-Ying Hu;
Hong-Ying Hu
*Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441, Japan
Search for other works by this author on:
Xia Huang;
Xia Huang
*Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441, Japan
Search for other works by this author on:
Yukio Tanaka;
Yukio Tanaka
**Department of Materials Science and Chemical Engineering, Yokohama National University, 156 Tokiwadai, Hodogaya-ku, Yokohama 240, Japan
Search for other works by this author on:
Kohei Urano;
Kohei Urano
**Department of Materials Science and Chemical Engineering, Yokohama National University, 156 Tokiwadai, Hodogaya-ku, Yokohama 240, Japan
Search for other works by this author on:
Hisao Ohtake
Hisao Ohtake
***Department of Fermentation and Biotechnology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 724, Japan
Search for other works by this author on:
Water Sci Technol (1996) 34 (5-6): 173–182.
Citation
Koichi Fujie, Hong-Ying Hu, Xia Huang, Yukio Tanaka, Kohei Urano, Hisao Ohtake; Optimal operation of bioreactor system developed for the treatment of chromate wastewater using enterobacter cloacae HO-1. Water Sci Technol 1 September 1996; 34 (5-6): 173–182. doi: https://doi.org/10.2166/wst.1996.0549
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Impact Factor 1.915
CiteScore 3.4 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021
20
Views
17
Citations