Treatment of wastewater containing nitrocellulose (NC) fines is a significant hazardous waste problem currently facing manufacturers of energetic compounds. Previous studies have ruled out the use of biological treatment, since NC has appeared to be resistant to aerobic and anaerobic biodegradation. The objective of this study was to examine NC biotransformation in a mixed methanogenic enrichment culture. A modified cold-acid digestion technique was used to measure the percentage of oxidized nitrogen (N) remaining on the NC. After 11 days of incubation in cultures amended with NC (10 g/L) and methanol (9.9 mM), the % N (w/w) on the NC decreased from 13.3% to 10.1%. The presence of NC also caused a 16% reduction in methane output. Assuming the nitrate ester on NC was reduced to N2, the decrease in CH4 represented almost exactly the amount of reducing equivalents needed for the observed decrease in oxidized N. An increase in the heat of combustion of the transformed NC correlated with the decrease in % N. There was no statistically significant decrease in % N when only NC was added to the culture, or in controls that contained only the sulfide-reduced basal medium. The biotransformed NC has a % N comparable to nonexplosive nitrated celluloses, suggesting that anaerobic treatment may be a technically feasible process for rendering NC nonhazardous.

This content is only available as a PDF.
You do not currently have access to this content.