Conventional (sedimentation) and advanced (dissolved air flotation) treatment were studied in the context of removal of the single cells form of the cyanobacteria Microcystis aeruginosa. This cyanobacterium species is recognised as an ideal surrogate for process removal efficiency assessment of particles of the problematic size range (3-10 m). The agglomeration (coagulation/flocculation) phase has been indicated as essential and determining the down-stream process efficiency, hence it is a prerequisite for process improvement. Relevant process parameters have been addressed on a laboratory (model water) and pilot plant (reservoir water) scale, including the influence of coagulant (FeCl3) dose, coagulation pH, flocculation time, energy input (G value), single stage versus tapered flocculation and application of cationic polymer as coagulant aid. The process efficiency was assessed as a function of the preceeding agglomeration (coagulation/flocculation) phase and the obtained particle (floc) size distributions. The particle (floc) size - density relationship was addressed in the context of more accurate process kinetic modelling.

You do not currently have access to this content.