One of the most important problems in the application of methods of parametric statistics to environmental systems is the impossibility of verifying the assumptions on probability distributions (e.g. the assumption of normally distributed measurements is usual but hardly exactly true). If Bayesian techniques are applied, the knowledge of probability distributions is even worse, because also vague prior knowledge (typical in modelling environmental systems) must be formulated in the form of (precise) prior probability distributions of model parameters or model structures. These two examples demonstrate the necessity of using imprecise probabilities in order to avoid arbitrariness in the choice of probability distributions. In spite of these well-known problems, imprecise probabilities are rarely used in environmental systems analysis and prediction. In order to motivate a change of this situation, this paper briefly reviews various techniques for the formulation of imprecise probabilities, and it demonstrates the advantages of using imprecise probabilities in a Bayesian context (for prior distributions and for measurement distributions) with a simple didactical example.
Skip Nav Destination
Article navigation
Research Article|
September 01 1997
On the necessity of using imprecise probabilities for modelling environmental systems
Water Sci Technol (1997) 36 (5): 149–156.
Citation
Peter Reichert; On the necessity of using imprecise probabilities for modelling environmental systems. Water Sci Technol 1 September 1997; 36 (5): 149–156. doi: https://doi.org/10.2166/wst.1997.0186
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Impact Factor 2.430
CiteScore 3.4 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021