A three year study of two sub-tropical water supply (potable and irrigation) reservoirs - Baroon Pocket and Leslie - aimed to develop an improved understanding and effective management strategy for the control of low level toxic cyanobacterial ‘blooms’. The two reservoirs appear to be typical of those elsewhere in tropical and sub-tropical Australia, being strongly stratified and monomictic if deep, or polymictic to monomictic (depending on inter-annual climatic variation) if shallow. In both reservoirs, thermal stratification appeared to be the key factor influencing the onset and demise of cyanobacterial blooms. Hypolimnetic deoxygenation was rapid during periods of stratification, and high rates of nitrogen and phosphorus release from bottom sediments occurred during anoxia. External nutrient inputs were dominated by episodic storm in-flows following the passing of (sub)tropical depressions, carrying massive sediment and nutrient loads into the reservoirs. As a consequence of this, and coupled with the high degree of internal nutrient recycling and the low national targets for cyanobacterial control in Australia, we believe that reduction of external nutrient inputs alone, through improved catchment management, may not be sufficient to prevent cyanobacterial blooms. Therefore, more emphasis should be given to ‘in-lake’ control strategies such as destratification, biomanipulation and in situ sediment treatment.

You do not currently have access to this content.