This paper deals with a phenomenon often occurring in sewers during storm events - transition from free surface to pressurized flow and vice versa. This transition is also possible in sewers where the discharge is controlled by some control devices, like gates. Experiments were carried out at a test rig consisting of a circular pipe with gates at the upstream and the downstream ends. Because of the relatively steep slope of the pipe and upstream boundary condition (flow below the gate), free surface flow at the upstream end was always supercritical, so that a hydraulic jump was always present during transitions (transcritical flow). Experimental results were used for verification of a numerical model based on a shock capturing method, the McCormack explicit finite difference scheme.

You do not currently have access to this content.