The design of vertical-flow (VF) reed beds is reviewed and the performance of the few worldwide existing hybrid systems, combining both horizontal- and vertical-flow beds, is assessed. Horizontal-flow (HF) beds are good for suspended solids removal and will remove BOD5 up to a set loading. Vertical-flow beds can achieve BOD5 removal at much higher loading rates and they are capable of complete nitrification as tertiary or secondary treatment systems. It is possible to achieve biological denitrification in horizontal-flow beds. By combining horizontal- and vertical-flow systems in the appropriate process sequence it is thus possible to produce a system which removes BOD5, TSS and achieves complete nitrification as well as substantial removal of nitrate and hence a lowered Total N.

The paper discusses the possible process options for combining horizontal- and vertical-flow systems. One example of these systems will be described in more detail. This is a flexible hybrid system being built by Severn Trent Water. Designed to treat the flow for a small village with a population of 129 it will have vertical-flow beds followed by horizontal-flow beds. The design allows for flexibility such that the size of the vertical-flow and horizontal-flow stages can be altered (for experimental purposes) to allow the design arrangement to be stressed and performance evaluated with the intention of defining the optimum loading rates for each of the stages.

The same site also has sludge drying reed beds for treating the primary sludge.

This content is only available as a PDF.
You do not currently have access to this content.