Industrial wastewaters that contain phenolic compounds are resistant to biodegradation and need preoxidation to improve their biodegradabilities. Preoxidation of these wastewaters by using ozone as the chemical oxidant has been found previously to be quite effective in promoting their biodegradability. In combined ozonation and biological processes, if we want to stop ozonation at the optimum condition (i.e. the maximum biodegradability), a biodegradation test is required. Since biodegradation tests such as BOD/TOC and oxygen uptake would take a long time, we could not know the time to stop ozonation immediately. This study was undertaken to identify process parameters (pH, ORP, ozone concentration in water, ozone gas concentration at the reactor outlet) that could be useful for monitoring and real-time control purposes in ozonation processes. We want to correlate these parameters with biodegradability and intermediates formed in ozonation processes. Results showed that the rapid increase of dissolved ozone and the first plateau termination of off-gas ozone concentrations are good indicators for the depletion of p-nitrophenol, the maximum of biodegradability and the elimination of toxicity. From the mean oxidation state curve, ozonation of p-nitrophenol could be divided into three stages, and a similar pattern could also be observed in ORP profiles. From the results of this research, the application of ozone concentration and ORP profiles as real-time control parameters seems promising.

This content is only available as a PDF.
You do not currently have access to this content.