This paper describes the path taken from client objectives through laboratory studies and detailed design to full-scale SBR operation and current research. Conventional municipal design principles have often been used to develop treatment processes for industrial wastewaters. The use of scientific trials to test design criteria offers the client a “tailor made” design fit for their particular wastewater character. In this project, a waste management company wished to upgrade their physical-chemical treatment plant to incorporate a biological reactor for treating a range of industrial wastewaters. Laboratory-scale trials were undertaken to determine appropriate design criteria for a full-scale biological process. These laboratory studies indicated that conventional design criteria were not appropriate and that a SBR configuration was optimal compared with an IDAR configuration. It was also found that a novel fungal:bacterial mixed liquor consortium developed, resulting in good effluent quality and settling properties. The treatment plant was able to be constructed and operational within a tight timeframe and budget, allowing the client to take advantage of a commercial opportunity. The plant has been operating since 1997 and meets its discharge conditions. By combining scientific studies with engineering principles, the end-user obtained a complete treatment plant to meet their specific needs. A further benefit of the laboratory trials is current research into the development of a fungal:bacterial SBR to treat industrial wastewaters. This offers ongoing knowledge to the operational full-scale SBR.

This content is only available as a PDF.
You do not currently have access to this content.