Fermentor-stabilized activated sludge from an industrial beverage bottling plant was grown on three different food sources: normal plant wastewater, plant wastewater containing high sucrose concentrations, and a synthetic glucose-based feed stock. Surface charge, hydrophobicity, and exopolysaccharide composition were measured on the stabilized bacterial flocs. Cell surface charge was measured by electrophoretic mobility, dye exchange titration, and a standard colloid titration, while cell hydrophobicity was determined using the bacterial adhesion to hydrocarbons (BATH) test. Exopolysaccharide profiles were determined by measuring concentrations of glucose, galactose, mannose, glucuronic, and galacturonic acids in digested exopolymer extractions using HPLC. Changes in the physical surface properties of the bacteria and the chemical composition of the extracted exopolymers were correlated with differences in the three food sources. Cell surface hydrophobicity was similar for cultures grown on different plant wastewaters, while the culture grown on synthetic food produced less floc hydrophobicity. Electrophoretic mobility measurements, charge titrations, and dye exchange titrations showed different total surface charge as well as varying charge availability. Additionally, total surface charge and total exopolysaccharide concentrations appeared less dependent on food source than the food-to-mass ratio. High concentrations of biodegradable food produced dispersed growth and high concentrations of exopolysaccharides that contributed to poor settling.

This content is only available as a PDF.
You do not currently have access to this content.