The collision efficiency factor of bubble and particle (αbp) in dissolved air flotation (DAF) can be calculated theoretically by trajectory analysis, which takes into account both hydrodynamics and inter-particle forces. To determine the theoretically optimum particle size for any given bubble size, a collision efficiency diagram for DAF was developed where collision efficiency is contoured on a plane of particle and bubble sizes for different conditions of particle zeta potential.

A set of experiments tested the validity of the suggested collision efficiency diagram, and examined whether pretreatment is important and why slight coagulant overdosing and shorter flocculation times are generally preferred in DAF, both current accepted practice. Batch DAF reactors were used and kaolin samples were prepared from jar tests using different alum dosages and flocculation times. The particle size distribution, particle zeta potential, and turbidity removal in each experiment were measured, as were bubble size and zeta potential.

The results agreed well with the predictions of the collision efficiency diagram and explained current practices. A collision efficiency diagram identifies the pretreatment goal, i.e., tailoring of the optimum characteristics required of particles (zeta potential and size) under existing operational bubble characteristic.

This content is only available as a PDF.
You do not currently have access to this content.