The purpose of this study is to develop a reliable and effective real-time control strategy by integrating artificial neural network (ANN) process models to perform automatic operation of a dynamic continuous-flow SBR system. The ANN process models, including ORP/pH simulation models and water quality ([NH4+-N] and [NOx--N]) prediction models, can assist in real-time searching the ORP and pH control points and evaluating the operation performances of aerobic nitrification and anoxic denitrification operation phases. Since the major biological nitrogen removal mechanisms were controlled at nitritification (NH4+-N→NO2--N) and denitritification (NO2--N→N2) stages, as well as the phosphorus uptake and release could be completely controlled during aerobic and anoxic operation phases, the system operation performances under this ANN real-time control system revealed that both the aeration time and overall hydraulic retention time could be shortened to about 1.9-2.5 and 4.8-6.2 hrs/cycle respectively. The removal efficiencies of COD, ammonia nitrogen, total nitrogen, and phosphate were 98%, 98%, 97%, and 84% respectively, which were more effective and efficient than under conventional fixed-time control approach.
Skip Nav Destination
Article navigation
Research Article|
July 01 2001
Development of a real-time control strategy with artificial neural network for automatic control of a continuous-flow sequencing batch reactor
B. C. Cho;
B. C. Cho
1Graduate Institute of Environmental Engineering, National Central University, Chung-Li City, 32054, Taiwan
Search for other works by this author on:
S.-L. Liaw;
S.-L. Liaw
1Graduate Institute of Environmental Engineering, National Central University, Chung-Li City, 32054, Taiwan
Search for other works by this author on:
C.-N. Chang;
C.-N. Chang
2Graduate Insitute of Environmental Science, Tunghai University, Taichung City, 40704, Taiwan
Search for other works by this author on:
R.-F. Yu;
R.-F. Yu
3Department of Safety, Health and Environmental Engineering, National Lien-Ho Institute of Technology, Miao-Li, 360, Taiwan
Search for other works by this author on:
S.-J. Yang;
S.-J. Yang
1Graduate Institute of Environmental Engineering, National Central University, Chung-Li City, 32054, Taiwan
Search for other works by this author on:
B.-R. Chiou
B.-R. Chiou
1Graduate Institute of Environmental Engineering, National Central University, Chung-Li City, 32054, Taiwan
Search for other works by this author on:
Water Sci Technol (2001) 44 (1): 95–104.
Citation
B. C. Cho, S.-L. Liaw, C.-N. Chang, R.-F. Yu, S.-J. Yang, B.-R. Chiou; Development of a real-time control strategy with artificial neural network for automatic control of a continuous-flow sequencing batch reactor. Water Sci Technol 1 July 2001; 44 (1): 95–104. doi: https://doi.org/10.2166/wst.2001.0023
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Impact Factor 2.430
CiteScore 3.4 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021
31
Views
25
Citations