Heavy metal speciation in landfill leachates plays a significant role in determining the mobility during the percolation through soils. The complexation characteristics of landfill leachate directly affects heavy metal solubility and the extent of the interaction with soils, lowering or arising the sorbed amount depending on the relative affinity of the complexed metal and uncomplexed form to soil adsorption sites. In this paper, the adsorption of Cd, Ni and Cu onto kaolinite from three leachates (collected from landfill at different fermentation stage) is studied, also in comparison with metal speciation by two different operative procedures. The heavy metals, at their natural concentration, were divided into operational classes according to an exchange-based procedure and by fractionation on the basis of molecular weight (exchange onto Chelex100 resin and ultrafiltration, respectively). All the experiments were performed also on synthetic solutions designed according to leachate composition and theoretical speciation. The experimental results have shown leachate complexing capacity is strongly dependent on landfill age, and that broad parameters such as COD, DOC, pH, ionic strength and VFA concentration are not able to predict it. It is notheworthy that the strong complexing capacity of leachate can cause extraction of metals from the solid phase instead of adsorption from the liquid one.

This content is only available as a PDF.
You do not currently have access to this content.