Optimum conditioning of activated sludge in terms of minimum CST was shown to correspond to the complete removal of turbidity, and the increase in turbidity with shear due to e.g. pumping is therefore expected to affect conditioning. The optimum polymer dosage was directly related to the turbidity of activated sludge after two minutes shear, and was considerably lower than the dosage required for charge neutralisation. The turbidity produced by shear increased more than is proportional with solids concentration and was directly related to the apparent viscosity. It is suggested that increasing solids concentration causes increased surface erosion when network structures are broken, and this causes increases in turbidity and required polymer dosage per solids mass. For Åby activated sludge, optimum polymer dosage per solids mass increased by 52% when the solids concentration was increased from 8.2 to 13.7 g SS/l. Modelling of the effect of solids concentration predicts even higher increases in required polymer dosage for higher solids concentrations. This means that reduced thickening prior to pumping and conditioning may be desirable when the hydraulic capacity of the dewatering device is sufficient. Similar trends were observed for an anaerobically digested sludge. For this sludge, reduction of turbidity with FeCl3 reduced the polymer demand.

This content is only available as a PDF.
You do not currently have access to this content.