Illumination of aqueous TiO2 suspentions yields hydroxyl radicals, which can be trapped by methanol producing formaldehyde (HCHO). In this work, the photonic efficiency and quantum yield of HCHO formation in colloidal TiO2 solutions and, P25 and UV 100 suspensions have been determined. Differences in photocatalytic activity of the three photocatalysts have been found and are discussed. The photonic efficiency of HCHO formation in the presence of P25 and UV 100 depends on the concentration of TiO2 and the pH. The critical concentration is 2.5 g/L. Below this, the photonic efficiency with P 25 is higher than with UV 100, and vice versa. Optimum pH values for P25 and UV 100 giving the maximum photonic efficiency are 7.7 and 10.4, respectively. Compared to P25 and UV 100, the true quantum yield of HCHO formation in colloidal TiO2 solution varies a little with pH and virtually does not change with the amount of loading of TiO2. The true quantum yield varies as the inverse square root of light intensity. The quantum yield increases from 0.02 to 0.08 when the absorbed photon flux decreases from 8.1 × 10-7 Ein/L s to 4.9 × 10-8 Ein/L s. A simple model is presented to explain the experimental observation.
Skip Nav Destination
Article navigation
Research Article|
September 01 2001
Determination of photonic efficiency and quantum yield of formaldehyde formation in the presence of various TiO2 photocatalysts
C. Wang;
C. Wang
*Institut fur Solarenergieforschung, Hameln/Emmerthal(ISFH), Aubenstelle Hannover, Sokelantstr.5, D-30165 Hannover, Germany
**Freie Universitat Berlin, Institut fur Chemie/Physikalische and Theoretische Chemie, Takustr.3 D-14195 Berlin, Germany
Search for other works by this author on:
D.W. Bahnemann;
D.W. Bahnemann
*Institut fur Solarenergieforschung, Hameln/Emmerthal(ISFH), Aubenstelle Hannover, Sokelantstr.5, D-30165 Hannover, Germany
Search for other works by this author on:
J.K. Dohrmann
J.K. Dohrmann
**Freie Universitat Berlin, Institut fur Chemie/Physikalische and Theoretische Chemie, Takustr.3 D-14195 Berlin, Germany
Search for other works by this author on:
Water Sci Technol (2001) 44 (5): 279–286.
Citation
C. Wang, D.W. Bahnemann, J.K. Dohrmann; Determination of photonic efficiency and quantum yield of formaldehyde formation in the presence of various TiO2 photocatalysts. Water Sci Technol 1 September 2001; 44 (5): 279–286. doi: https://doi.org/10.2166/wst.2001.0306
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Impact Factor 2.430
CiteScore 3.4 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021