Granular methanogenic sludge was able to dechlorinate 1,2-dichloroethane (1,2-DCA) to ethene in UASB reactors. Ethanol served as the sole carbon and energy source. The average dechlorination rate measured on the basis of ethene production varied between 1.7 and 2.1 μmol 1,2-DCA/(h.gVSS) (46.7 and 57.4 mg/L.d). In order to elucidate the microbial origin of this bioconversion, enrichment cultures of the methanogenic sludge were prepared with different carbon and electron sources: pyruvate, lactate, H2/CO2, ethanol and formate. Dithiothreitol (DTT) was the strong reductant in order to increase the negative redox potential in the media. A homo-acetogenic gram-positive strain could be isolated in the presence of formate. 16S rRNA of the isolated strain showed that the bacterium was closely related (99.7%) to Acetobacterium wieringae. The strain also grew on pyruvate, lactate, H2/CO2 and ethanol, although dechlorination rates of 1,2-DCA were at least 5 times higher when formate was the (only) electron source. Average conversion rates reached 3 μmol/(h.gdry cells) and appeared to relate to cometabolic biocatalysis on the corrinoid centers of the homo-acetogenic strain. Some perspectives of anaerobic in situ bioremediation of groundwater polluted with chloroethanes are presented.

This content is only available as a PDF.
You do not currently have access to this content.