Removal of phosphorus and nitrogen is required to prevent eutrophication problems in lakes and enclosed coastal seas. And recovery of phosphorus from wastewater has been attracting attention because of lack in phosphorus resources in the near future. In this study, reaction kinetics and design parameters of struvite production are experimentally investigated by using basic reaction type and a draft-tube type reactors. Struvite production rate, which is a very important parameter in reactor design and efficiency estimation, is formulated in an equation consisting of a rate constant (k2), and magnesium, phosphate and ammonium concentrations. The value of k2 is shown to be increased with struvite concentration and mixing intensity in the reactor. The developed equation is applied to the results obtained from the draft-tube type reactor experiments and verified for its applicability. High struvite concentration of 10-25% is maintained in the draft-tube reactor experiments. 92% removal and recovery efficiency with effluent phosphorus concentration of 17 mg/L is achieved under the conditions of 4 minutes reaction time, pH of 8.5 and Mg/P molar ratio of 1.1.

This content is only available as a PDF.
You do not currently have access to this content.