The enhanced biological phosphorus removal (EBPR) process was adapted to membrane bioreactor (MBR) technology. One bench-scale plant (BSP, 200-250 L) and two pilot plants (PPs, 1,000-3,000 L each) were operated under several configurations, including pre-denitrification and post-denitrification without addition of carbon source, and two solid retention times (SRT) of 15 and 26 d. The trials showed that efficient Bio-P removal can be achieved with MBR systems, in both pre- and post-denitrification configurations. EBPR dynamics could be clearly demonstrated through batch-tests, on-line measurements, profile analyses, P-spiking trials, and mass balances. High P-removal performances were achieved even with high SRT of 26 d, as around 9 mgP/L could be reliably removed. After stabilisation, the sludge exhibited phosphorus contents of around 2.4%TS. When spiked with phosphorus (no P-limitation), P-content could increase up to 6%TS. The sludge is therefore well suited to agricultural reuse with important fertilising values. Theoretical calculations showed that increased sludge age should result in a greater P-content. This could not be clearly demonstrated by the trials. This effect should be all the more significant as the influent is low in suspended solids.

This content is only available as a PDF.
You do not currently have access to this content.