Two side-by-side experimental sub-surface flow systems allowed direct comparison of wetland performance under batch and continuous-flow operation. One system consisted of microcosm “columns” operated in 20-day batch mode while the second consisted of continuous-flow “cells” operated at a five-day residence time. Both systems treated identical synthetic domestic wastewater for two years and then treated identical synthetic mine-impacted water for one year. Each system had replicates planted with Typha latifolia, Scirpus acutus and unplanted controls. Temperature was cycled annually between 4 to 24°C. Results indicated that plant species, season, and mode of operation interacted strongly in controlling dynamics of COD, nitrogen species, phosphate, sulfate, and redox potentials. In batch-loaded columns, between-species differences in oxidation and COD removal were large in winter, during plant dormancy, but absent in summer; COD removal, sulfate concentration, and redox potentials were closely correlated, suggesting that variation in root-zone oxygenation due to seasonal plant growth patterns and temperature-dependent plant and microbial respiration may explain observed differences. In the continuous-flow cells, species and seasonal differences were minimal or non-existent, indicating that under continuous-flow operation plants either did not influence root zone oxidation or that this influence had no effect on wetland performance for COD and nutrient removal or sulfate reduction.

This content is only available as a PDF.
You do not currently have access to this content.