Nitrification, an oxygen-requiring microbial process, is generally considered the rate-limiting step for N removal in subsurface-flow constructed wetlands treating organic wastewaters. We used a simplified model of sequential N transformations and sinks to infer required rates of oxygen supply at 5 stages along experimental wetland mesocosms supplied with four different organic wastewaters with contrasting ratios of COD: N and forms of N. Mass balances of water-borne organic, ammoniacal and nitrate N, and plant and sediment N uptake showed average net rates of N mineralisation ranging from 0.22-0.53 g m-2 d-1, nitrification 0.56-2.15 g m-2 d-1, denitrification 0.47-1.99 g m-2 d-1 (60-84% of measured N removal) and plant assimilation 0.28-0.47 g m-2 d-1. The nitrogenous oxygen demand (NOD) required to support the observed nitrification rates alone was high compared to expected fluxes from surficial and plant-mediated oxygen transfer. In the presence of high levels of degradable organic matter (COD removal rates up to 66 g m-2 d-1), heterotrophs with significantly higher oxygen affinities and energy yields are expected to out-compete nitrifiers for available oxygen. Problems with commonly held assumptions on the nature of coupled nitrification-denitrification in treatment wetlands are discussed.
Skip Nav Destination
Article navigation
Research Article|
September 01 2003
Oxygen flux implications of observed nitrogen removal rates in subsurface-flow treatment wetlands
C.C. Tanner;
*National Institute of Water and Atmospheric Research, PO Box 11-115, Hamilton, New Zealand
E-mail: c.tanner@niwa.co.nz
Search for other works by this author on:
R.H. Kadlec
R.H. Kadlec
**Wetland Management Services, Chelsea, Michigan, USA
Search for other works by this author on:
Water Sci Technol (2003) 48 (5): 191–198.
Citation
C.C. Tanner, R.H. Kadlec; Oxygen flux implications of observed nitrogen removal rates in subsurface-flow treatment wetlands. Water Sci Technol 1 September 2003; 48 (5): 191–198. doi: https://doi.org/10.2166/wst.2003.0317
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.