Data on the influence of feeding strategy on the performance of a fed-batch anaerobic sequencing reactor containing biomass immobilized on polyurethane foam and subjected to liquid phase circulation are presented and discussed. Six-hour cycles, temperature of 30°C and circulation flow rate of 6 L/h were used. During each cycle 890 mL of synthetic domestic wastewater, with organic matter concentration of 500 mgCOD/L were fed to the reactor. The feeding strategies were implemented using fill times of 6 min (batch mode), 60, 120, 240 (fed-batch/batch mode) and 360 min (fed-batch mode). The system attained high efficiency and stability for all the operating conditions, and the substrate removal efficiency based on filtered samples presented a slight decrease from 85% to 81% when fill time was increased from 6 min to 360 min. A model considering a first-order kinetic equation was fitted to the experimental data. The apparent kinetic parameters for both batch and fed-batch phases were estimated, thus permitting evaluation of the influence of the feeding strategy on the reactor performance. The current system may be considered flexible in terms of the operating conditions it is subjected to.

This content is only available as a PDF.
You do not currently have access to this content.