Effects of hydroxylamine (NH2OH), an intermediate of NH4+ oxidation, on microbial community structure and function of two autotrophic nitrifying biofilms fed with and without NH2OH were analyzed by a 16S rRNA approach and the use of microelectrodes. In the NH2OH-added biofilm, partial oxidation of NH4+ to NO2- was observed, whereas complete oxidation of NH4+ to NO3- was achieved in the control biofilm. In situ hybridization results revealed that no nitrite-oxidizing bacteria (NOB) hybridized with any specific probes were detected in the NH2OH-added biofilm. Thus, the addition of low concentrations of NH2OH (250 mM) completely inhibited the growth of NOB. Phylogenetic analysis of 16S rDNA indicated that the ammonia-oxidizing bacteria (AOB) detected in both biofilms were closely related to Nitrosomonas europaea, and that the clone sequences from both biofilm libraries have more than 99% similarity to each other. However, in situ hybridization results revealed that the addition of NH2OH changed the form of growth pattern of the dominant Nitrosomonas spp. from dense clusters mode to single scattered cells mode. Microelectrode measurements revealed that the average NH4+ consumption rate calculated in the NH2OH-added biofilm was two times higher than that in the control biofilm. This clearly demonstrated that the oxidation of NH4+ was stimulated by NH2OH addition.
Skip Nav Destination
Article navigation
Research Article|
June 01 2004
Effects of hydroxylamine on microbial community structure and function of autotrophic nitrifying biofilms determined by in situ hybridization and the use of microelectrodes
T. Kindaichi;
T. Kindaichi
*Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Japan
Search for other works by this author on:
S. Okabe;
*Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Japan
E-mail: [email protected]
Search for other works by this author on:
H. Satoh;
H. Satoh
**Department of Civil Engineering, Hachinohe Institute of Technology, Hachinohe, Aomori 031-8501, Japan
Search for other works by this author on:
Y. Watanabe
Y. Watanabe
*Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Japan
Search for other works by this author on:
Water Sci Technol (2004) 49 (11-12): 61–68.
Citation
T. Kindaichi, S. Okabe, H. Satoh, Y. Watanabe; Effects of hydroxylamine on microbial community structure and function of autotrophic nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Water Sci Technol 1 June 2004; 49 (11-12): 61–68. doi: https://doi.org/10.2166/wst.2004.0805
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00