In order to characterize the nitrogen conversion characteristics in a thermophilic aerobic digestion (TAD) system, a laboratory study has been conducted with the analysis of effluent gas and microbial community in the sludge samples. The lab TAD system was operated with HRT of 3 days and 60°C. Based on the nitrogen mass balance, it has been found that about 2/3 of the daily load of nitrogen was converted to the gaseous form of nitrogen whereas cellular transformation and unmetabolized nitrogen accounted for about 1/3. Among the gaseous nitrogen transformation, significant amount of influent nitrogen had been converted to N2 gas (29% of influent N) and N2O (9% of influent N). Ammonia conversion was only 28% of influent N. The detection of N2O gas is a clear indication of the biological nitrogen reduction process in the thermophilic aerobic digester. No conclusive evidence for the existence of aerobic deammonification has been found. The microbial community analysis showed that thermophilic bacteria such as Bacillus thermocloacae, Bacillus sp. and Clostridial groups dominated in this TAD reactor. The diverse microbial community in TAD sludge may play an important role in removing both strong organics and nitrogen from piggery waste.

This content is only available as a PDF.
You do not currently have access to this content.