Toxic shock-induced deflocculation was examined for activated sludge exposed to six different classes of industrially relevant chemical toxins: an electrophilic solvent (1-chloro-2,4-dinitrobenzene, CDNB), a heavy metal (cadmium), a hydrophobic chemical (1-octanol), an uncoupling agent (2,4-initrophenol, DNP), alkaline pH, and weakly complexed cyanide. The concentrations required to inhibit respiration by 50% were used to shock sequencing batch reactors (SBRs) containing a nitrifying (10-day solids retention time (SRT)) and a non-nitrifying (2-day SRT) biomass. Effluent total suspended solids (TSS) and soluble potassium were monitored to examine deflocculation caused by a bacterial stress response mechanism called glutathione-gated potassium efflux (GGKE). Reactors were monitored for recovery over a period of 3 SRTs or less. At the concentrations tested, CDNB, cadmium and pH 11 were found to cause significant increases in effluent TSS concentrations and showed elevated levels of potassium. In contrast, octanol, DNP and cyanide did not induce severe deflocculation and showed moderate increases in effluent potassium levels. Recovery of effluent TSS and potassium concentrations to control levels generally did not correlate, supporting the hypothesis that reflocculation requires regrowth of biomass. These results suggest that different chemicals induce deflocculation in SBRs, but deflocculation is not necessarily caused by the GGKE mechanism in all cases.
Skip Nav Destination
Article navigation
Research Article|
November 01 2004
Deflocculation effects due to chemical perturbations in sequencing batch reactors
I.D.S. Henriques;
1Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, 418 Durham Hall (0246), Blacksburg, VA 24061, USA (E-mail: rkellyii@vt.edu; nlove@vt.edu)
E-mail: inesh@vt.edu
Search for other works by this author on:
R.T. Kelly, II;
R.T. Kelly, II
1Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, 418 Durham Hall (0246), Blacksburg, VA 24061, USA (E-mail: rkellyii@vt.edu; nlove@vt.edu)
Search for other works by this author on:
N.G. Love
N.G. Love
1Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, 418 Durham Hall (0246), Blacksburg, VA 24061, USA (E-mail: rkellyii@vt.edu; nlove@vt.edu)
Search for other works by this author on:
Water Sci Technol (2004) 50 (10): 287–294.
Citation
I.D.S. Henriques, R.T. Kelly, N.G. Love; Deflocculation effects due to chemical perturbations in sequencing batch reactors. Water Sci Technol 1 November 2004; 50 (10): 287–294. doi: https://doi.org/10.2166/wst.2004.0662
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Impact Factor 1.915
CiteScore 3.3 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021