This paper deals with turbidity currents in a circular settling tank. A mathematical model with a k-ɛ turbulence model has been developed. Using this mathematical model, the following unique properties of turbidity currents in a circular settling tank are demonstrated: turbulence induced by the turbidity currents remains after most sediment particles have settled down. This residual turbulent diffusivity has a serious effect on the settling of finer particles. This phenomenon is a very important result in this study. Especially, in the case of a smaller densimetric Froude number, which is a stronger density effect, this residual turbulence effect increases, and also decreases the removal ratio in the downstream with low concentration. Generally, the bottom density current enhances the sediment transport near the tank bottom, while the bottom shear gives reversal influence. When the settling velocity is high, the settling ends under the developing stage both of the turbidity current and of the bottom boundary layer. On the contrary, if the settling velocity is low, the sediment travels a long distance, where the boundary layer is built up, resulting in the reduction of sediment transport near the tank bottom. The overall properties of the density-affected settling tank are also investigated in terms of the removal ratio.
Skip Nav Destination
Article navigation
Research Article|
December 01 2004
Turbidity current in a circular settling tank
K. Fujisaki;
1Civil Engineering Department, Kyushu Institute of Technology, Kitakyushu, 804-8550, Japan
E-mail: fujisaki@msh.biglobe.ne.jp
Search for other works by this author on:
N. Nagata
N. Nagata
1Civil Engineering Department, Kyushu Institute of Technology, Kitakyushu, 804-8550, Japan
Search for other works by this author on:
Water Sci Technol (2004) 50 (12): 237–244.
Citation
K. Fujisaki, N. Nagata; Turbidity current in a circular settling tank. Water Sci Technol 1 December 2004; 50 (12): 237–244. doi: https://doi.org/10.2166/wst.2004.0719
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Impact Factor 1.915
CiteScore 3.4 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021
24
Views
2
Citations