The objective of this study was to determine the primary removal mechanisms of endocrine disruptors such as steroidal hormones present in reclaimed water, specifically 17b-estradiol, estriol, and testosterone, during groundwater recharge via soil aquifer treatment (SAT). Steroidal hormones were quantified using enzyme-linked immunosorbent assays. Bench-scale studies and laboratory-scale soil column experiments were employed to determine what mechanisms (i.e., adsorption, biodegradation, photolytic degradation) dominate the removal of the three compounds of interest during SAT. Findings of these studies revealed that the dominating removal mechanism for the compounds of interest during SAT is adsorption to the porous media matrix and additional attenuation to below the detection limit occurred in the presence of bioactivity. This additional removal occurred regardless of dominating redox conditions (aerobic vs. anoxic) or the type of organic carbon matrix present (hydrophobic acids, hydrophilic carbon vs. colloidal carbon).

This content is only available as a PDF.
You do not currently have access to this content.