An updated biological nitrogen and phosphorus removal process - BICT (Bi-Cyclic Two-Phase) biological process - is proposed and investigated. It is aimed to provide a process configuration and operation mode that has facility and good potential for optimizing operation conditions, especially for enhancing the stability and reliability of the biological nutrient removal process. The proposed system consists of an attached-growth reactor for growing autotrophic nitrifying bacteria, a set of suspended-growth sequencing batch reactors for growing heterotrophic organisms, an anaerobic biological selector and a clarifier. In this paper, the fundamental concept and operation principles of BICT process are described, and the overall performances, major operation parameters and the factors influencing COD, nitrogen and phosphorus removal in the process are also discussed based on the results of extensive laboratory experiments. According to the experimental results with municipal sewage and synthetic wastewater, the process has strong and stable capability for COD removal. Under well controlled conditions, the removal rate of TN can reach over 80% and TP over 90% respectively, and the effluent concentrations of TN and TP can be controlled below 15 mg/L and 1.0 mg/L respectively for municipal wastewater. The improved phosphorus removal has been reached at short SRT, and the recycling flow rate of supernatant between the main reactors and attached-growth reactor is one of the key factors controlling the effect of nitrogen removal.

This content is only available as a PDF.
You do not currently have access to this content.