A submerged membrane bioreactor (SMBR) and a conventional activated sludge system (CAS) were compared in parallel over a period of more than 260 days on treating synthetic ammonia-bearing inorganic wastewater without sludge purge under decreased hydraulic retention times (HRTs). Conversion of NH4+-N to NO3--N was achieved with an efficiency of over 98% at an HRT ≥ 10 h in the SMBR, while similar performance was obtained at an HRT ≥ 20 h in the CAS. Denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR) amplified 16S rDNA was used to monitor variations of community structures in the two systems. With the prolongation of operation, the number of DGGE bands in the SMBR gradually increased from the initial 11 bands to the final 22 bands, whereas that in the CAS varied in a range between 13 and 183 Sequence analysis indicates that Nitrosomonas sp. and Nitrospira sp. were the dominating nitrification species responsible for ammonia and nitrite oxidation, respectively. Heterotrophic bacteria like Pseudomonas sp. and Flavobacteria sp. existed in both of the systems although only inorganic wastewater was fed. Substantive accumulation of extracellular polymeric substances (EPS) in the SMBR was confirmed by scanning electron microscopy and EPS analysis.
Skip Nav Destination
Article navigation
Research Article|
March 01 2005
Comparison of nitrification performance and microbial community between submerged membrane bioreactor and conventional activated sludge system
H. Li;
H. Li
*State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, 100085, People's Republic of China
Search for other works by this author on:
M. Yang;
*State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, 100085, People's Republic of China
E-mail: yangmin@mail.rcees.ac.cn
Search for other works by this author on:
Y. Zhang;
Y. Zhang
*State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, 100085, People's Republic of China
Search for other works by this author on:
X. Liu;
X. Liu
*State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, 100085, People's Republic of China
Search for other works by this author on:
M. Gao;
M. Gao
*State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing, 100085, People's Republic of China
Search for other works by this author on:
Y. Kamagata
Y. Kamagata
**Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology, P.O.1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
Search for other works by this author on:
Water Sci Technol (2005) 51 (6-7): 193–200.
Citation
H. Li, M. Yang, Y. Zhang, X. Liu, M. Gao, Y. Kamagata; Comparison of nitrification performance and microbial community between submerged membrane bioreactor and conventional activated sludge system. Water Sci Technol 1 March 2005; 51 (6-7): 193–200. doi: https://doi.org/10.2166/wst.2005.0638
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Impact Factor 1.915
CiteScore 3.3 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021