Various parameter optimization approaches to a five-stage step-feed EBPR process modeled using the ASM3+bio-P module were examined. Five stoichiometric (YSTO,NO, YH,O2, YH,NO, YPAO,O2, YPO4) and seven kinetic parameters (kSTO, ηNO, bH, μmax,PAO, qPHA, qPP, μmax,A) were estimated. The optimization approaches could be classified based on the data sources (batch experiments or CSTR operation data) and the number of target variables used in calculating the objective function. Optimized parameter values obtained by each approach were validated with CSTR operation data that were not used for parameter optimization. The results showed that the parameter optimization only with batch experimental results could not be directly applied to CSTR operation data. ASM3+bio-P module parameters could be finely optimized only with CSTR operation data when sufficient target variables for objective function calculation were applied. When the number of target variables was increased, prediction performance was significantly improved. Once optimized, the model was able to predict the characteristic features of the five-stage step-feed process; namely, a high PAO yield, fast PAO growth, fast XPP storage, slow XSTO and XPHA storage.
Skip Nav Destination
Article navigation
Research Article|
January 01 2006
Practical approach to parameter estimation for ASM3+bio-P module applied to five-stage step-feed EBPR process
S.H. Lee;
*Department of Environmental Engineering, Pusan National University, Busan, 609-735, Korea, (E-mail: reallife2@pusan.ac.kr; joohko@pusan.ac.kr; kmboo@pusan.ac.kr; hjwoo@pusan.ac.kr; cwkim@pusan.ac.kr)
E-mail: reallife2@pusan.ac.kr
Search for other works by this author on:
J.H. Ko;
J.H. Ko
*Department of Environmental Engineering, Pusan National University, Busan, 609-735, Korea, (E-mail: reallife2@pusan.ac.kr; joohko@pusan.ac.kr; kmboo@pusan.ac.kr; hjwoo@pusan.ac.kr; cwkim@pusan.ac.kr)
Search for other works by this author on:
K.M. Poo;
K.M. Poo
*Department of Environmental Engineering, Pusan National University, Busan, 609-735, Korea, (E-mail: reallife2@pusan.ac.kr; joohko@pusan.ac.kr; kmboo@pusan.ac.kr; hjwoo@pusan.ac.kr; cwkim@pusan.ac.kr)
Search for other works by this author on:
T.H. Lee;
T.H. Lee
**Department of Environmental Engineering, Andong National University, Andong, 760-749, Korea, (E-mail: leeth55@pusan.ac.kr)
Search for other works by this author on:
H.J. Woo;
H.J. Woo
*Department of Environmental Engineering, Pusan National University, Busan, 609-735, Korea, (E-mail: reallife2@pusan.ac.kr; joohko@pusan.ac.kr; kmboo@pusan.ac.kr; hjwoo@pusan.ac.kr; cwkim@pusan.ac.kr)
Search for other works by this author on:
C.W. Kim
C.W. Kim
*Department of Environmental Engineering, Pusan National University, Busan, 609-735, Korea, (E-mail: reallife2@pusan.ac.kr; joohko@pusan.ac.kr; kmboo@pusan.ac.kr; hjwoo@pusan.ac.kr; cwkim@pusan.ac.kr)
Search for other works by this author on:
Water Sci Technol (2006) 53 (1): 139–148.
Citation
S.H. Lee, J.H. Ko, K.M. Poo, T.H. Lee, H.J. Woo, C.W. Kim; Practical approach to parameter estimation for ASM3+bio-P module applied to five-stage step-feed EBPR process. Water Sci Technol 1 January 2006; 53 (1): 139–148. doi: https://doi.org/10.2166/wst.2006.016
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Impact Factor 1.915
CiteScore 3.3 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021