A systematic procedure has been proposed for the design of a multi-channel, continuous-flow electrocoagulation reactor of mono-polar configuration for the removal of sub-micron particles from wastewater. Using the chemical–mechanical–planarization (CMP) process as the target source of wastewater, a series of laboratory-scale studies were conducted to determine the required operating conditions for the efficient removal of the ultrafine particles. These operating criteria included charge loading (≥8 F m−3), current density (≥5.7 A m−2), hydraulic retention time (≥60 min), as well as the initially operational pH (7∼10). Furthermore, a steady-state transport equation with second-order reaction kinetics was employed to describe the rate of coagulation as the rate-limiting factor. The actual kinetic constant determined from the laboratory-scale experiments was approximately 1.2 × 10−21 m3 s−1, which was three orders of magnitude smaller than that calculated based on Brownian diffusion during the coagulation.The model was subsequently validated with a series of experiments using a pilot-scale electro-coagulation reactor geometrically similar to the laboratory-scale reactor with nearly twenty times volumetric scale-up.
Skip Nav Destination
Article navigation
Research Article|
March 01 2006
Parameter optimization and design aspect for electro- coagulation of silica nano-particles in wafer polishing wastewater
W. Den;
*Department of Environmental Science, Tunghai University, Taichung-Kan Road, Sec. 3, #181, P.O. 818, Taichung City, Taiwan 407, Republic of China, (E-mail: wden@mail.thu.edu.tw)
E-mail: wden@mail.thu.edu.tw
Search for other works by this author on:
C. Huang
C. Huang
**Institute of Environmental Engineering, National Chiao Tung University, Po-Ai St., #75, Hsinchu, Taiwan 300, Republic of China, (E-mail: cphuang@mail.nctu.edu.tw)
Search for other works by this author on:
Water Sci Technol (2006) 53 (6): 187–194.
Citation
W. Den, C. Huang; Parameter optimization and design aspect for electro- coagulation of silica nano-particles in wafer polishing wastewater. Water Sci Technol 1 March 2006; 53 (6): 187–194. doi: https://doi.org/10.2166/wst.2006.195
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Impact Factor 2.430
CiteScore 3.4 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021