This study aimed to evaluate the performance of the unified high-rate anaerobic digestion (UHAD) system treating co-substrate of sewage sludge and food waste. A 24-hr operating sequence consisted of four steps including fill, react, settle, and draw. The effects of co-substrate and organic loading rate (OLR) on the performance were investigated to verify the system applicability. In each OLR, the UHAD system showed higher CH4 recovery (>70%), CH4 yield (0.3 L CH4/g VSadded) and CH4 production rate (0.6 L CH4/L/d) than the control system. In the specific methanogenic activity (SMA) tests on thermophilic biomass of the UHAD system, the average SMA of acetate (102 mL CH4/gVSS/d) was much higher than those of butyrate (85 mL CH4/g SS/d) and propionate (42 mL CH4/gVSS/d). It was demonstrated that the UHAD system for co-digestion resulted in higher methane yield and methane production rate due to sequencing batch operation, thermophilic digestion, and co-digestion. The enhanced performance could be attributed to longer retention time of active biomass, faster hydrolysis, higher CH4 conversion rate, and balanced nutrient conditions of co-substrate in the UHAD system. Consequently, this optimized unification could be a viable option for the simultaneous treatment of two types of OFMSW with high stability.

This content is only available as a PDF.
You do not currently have access to this content.