Experiments with concentration of nutrients from source separated urine and reject water from digestion of sludge in sewage treatment plants (STP) have been performed in laboratory and pilot scale. The methods tested were membrane filtration with reverse osmosis (RO), evaporation, and precipitation of phosphorus and distillation of ammonia. In membrane filtration, pre-filtration with particle separation at 5–10 μm was enough to avoid clogging of the membranes. Separation of phosphorus (P), potassium (K) and sulphur (S) was almost 100%, while separation of nitrogen (N) was dependent on pH. The capacity of flux increased with temperature and pressure. In evaporation, all P, K and S were still in the concentrate, while pH had to be decreased to 4.5 to avoid significant loss of N. In precipitation and distillation, about 90% of P could be recovered from urine as magnesium ammonium phosphate (MAP) just by adding MgO. For the reject water pH was first increased by aeration to remove CO2. Ammonium can be distilled from the water phase after precipitation of MAP, without further increase of pH. At least 80–90% of N can be distilled in 5–10% of the total volume. The article also discusses the quality of different products, cost of separation, and energy and chemical demand.

This content is only available as a PDF.
You do not currently have access to this content.