Highly efficient, versatile, adsorbent, nanoscale zero-valent iron (NZVI) was synthesised and encapsulated by an anionic polymer to make it a mobile delivery vehicle (DV-NZVI) for in-situ groundwater and soil remediation. NZVI was found to be highly dispersed with surfactant within a size of 1–100 nm. Laboratory column experiments were conducted by employing glass beads as a porous medium to delineate the characteristics of DV-NZVI transport as a reactive material in saturated zones under a number of conditions. It was observed that there was an optimum concentration of polymer, i.e. 6 g/L, for maximum transport of DV-NZVI, at which point, as the flow rate increases, the transport of DV-NZVI increases. Similarly, at the optimum concentration we observed that as the depth of porous media increased, the breakthrough of DV-NZVI was retarded. These results confirmed that DV-NZVI has significant potential for use as a colloidal reactive barrier material in deep groundwater systems in lieu of pump and treat approaches and conventional permeable reactive barriers (PRB).

This content is only available as a PDF.
You do not currently have access to this content.